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Abstract— Compared with person re-identification, which has
attracted concentrated attention, vehicle re-identification is an
important yet frontier problem in video surveillance and has
been neglected by the multimedia and vision communities. Since
most existing approaches mainly consider the general vehicle
appearance for re-identification while overlooking the distinct
vehicle identifier, such as the license number plate, they attain
suboptimal performance. In this paper, we propose PROVID, a
PROgressive Vehicle re-IDentification framework based on deep
neural networks. In particular, our framework not only utilizes
the multi-modality data in large-scale video surveillance, such
as visual features, license plates, camera locations, and contex-
tual information, but also considers vehicle re-identification in
two progressive procedures: coarse-to-fine search in the feature
domain, and near-to-distant search in the physical space. Further-
more, to evaluate our progressive search framework and facilitate
related research, we construct the VeRi dataset, which is the
most comprehensive dataset from real-world surveillance videos.
It not only provides large numbers of vehicles with varied labels
and sufficient cross-camera recurrences but also contains license
number plates and contextual information. Extensive experiments
on the VeRi dataset demonstrate both the accuracy and efficiency
of our progressive vehicle re-identification framework.

Index Terms—Progressive Search, Vehicle Re-identification,
Deep Learning, License Plate Verification, Contextual Informa-
tion.

I. INTRODUCTION

EHICLES, such as cars, buses, and trucks, have been

an indispensable part of human life as well as an
important class of objects in urban surveillance systems.
Many researchers in the multimedia and computer vision
fields have focused on vehicle-related research, such as de-
tection [1], fine-grained categorization [2], 3-D pose esti-
mation [3], and driver behavior modeling [4]. Nevertheless,
vehicle re-identification (Re-Id) is a significant but frontier
area that is always overlooked and far from solved by the com-
munity. Taking a query vehicle as the input, vehicle Re-Id aims
to search in the surveillance data and find the same vehicle
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Fig. 1: An example of vehicle Re-Id: searching for the white
BMW SUV with multi-modality data in urban surveillance.

recorded by different cameras, as shown in Figure 1. Vehicle
Re-Id can be pervasively applied in intelligent surveillance
systems [5], smart transportation [6], and urban computing [7].
Through the ubiquitous surveillance networks, it can quickly
tell users where and when the vehicle was in the city.

Vehicle Re-Id can be considered as an instance-level ob-
ject search task, which is different from traditional vehicle
detection, tracking, and categorization problems. Similar to
near-duplicate image retrieval [8], [9], content-based video
search [10], and object instance search [11], vehicle Re-Id is to
find the vehicle with the same identity from urban surveillance
videos. In real-world practice, humans can treat this task in a
progressive manner [12]. For instance, if the security officers
need to find a suspect car in a city with large-scale video
surveillance networks, appearance attributes such as models,
types, and colors can be initially used to find similar vehicles
and reduce the search field. Then, they can identify the targets
precisely from the filtered vehicles by matching the license
plates, which can reduce the enormous workload. Meanwhile,
they will search videos recorded by cameras from near to
far positions and from close to distant time range. Therefore,
the contextual information such as spatiotemporal cues thus
can decidedly assist in the search process. Inspired by real-
world practice, we can construct a progressive vehicle search
framework in a two-step procedure with multi-level attributes
and multi-modal data: 1) searching from coarse to fine in the
feature domain, which first employs the appearance features
for a coarse but fast filter and then exploit the license plate as
the unique identifier to find the same vehicles; and 2) searching
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Fig. 2: (a) The same vehicles have great within-class differences in different viewpoints (left). Different but similar vehicles
have trivial inter-class differences (right). (b) The license number plates as the unique ID for vehicle search. (Plate is masked
to protect privacy.) (¢) The contextual information can assist in vehicle search in the city.

from close to far in the physical world, which considers the
time and locations as the key cues for vehicle search.

Nevertheless, the construction of the progressive vehicle re-
identification framework with multi-modal data from practical
urban video surveillance faces three significant challenges: first
the appearance-based methods usually cannot give satisfactory
results because of the trivial inter-class differences between
different vehicles from similar viewpoints and the dramatic
within-class differences of the same vehicle from various
viewpoints, as shown in Figure 2(a). Moreover, conventional
license plate recognition systems can hardly recognize the
license plate in an unconstrained surveillance environment
because of the various lightning conditions and viewpoints,
noise, and low resolution, as shown in Figure 2(b). In addition,
the plate recognition system usually contains multiple proce-
dures such as plate localization, calibration, character segmen-
tation, and recognition, as in [13], [14]. If one of the steps
fails or any of the characters on the plate is mis-recognized,
the vehicle Re-Id results might be incorrect. How to utilize the
license plate effectively and efficiently in unconstrained urban
surveillance is a crucial challenge. Furthermore, the contextual
information, such as the spatiotemporal pattern of vehicles,
camera locations, and topology of the city roads is difficult to
discover and model. The environmental factors and the driver’s
behavior can introduce great uncertainty [4]. How to utilize the
contextual information is another great challenge.

Existing vehicle Re-Id approaches are predominantly fo-
cused on appearance features of vehicles, such as colors, types,
shapes, and detailed attributes [1], [15]-[17]. Therefore, they
can hardly differentiate among vehicles with similar models
and colors and identify the same vehicle in a varied environ-
ment. Moreover, they usually overlook unique identifiers, such
as number plate when matching a vehicle. In contrast, we com-
prehensively utilize the appearance attributes and the license
plate information in a coarse-to-fine manner for vehicle search.
The appearance features can be employed to find the similar
vehicles, and then the license number plates are used to match
the same vehicle precisely. In addition, existing approaches
neglect the spatiotemporal context. Contextual information has
been exploited in several research fields such as intelligent
surveillance [18], cross-camera person tracking [19], person
Re-Id [20], and object retrieval [21]. With contextual cues
recorded by the surveillance system, we treat the search
procedure by a from-close-to-far manner in the physical space.

This paper proposes a PROgressive Vehicle re-IDentification
framework based on deep neural networks, named PROVID,
which features four important properties: 1) a progressive
vehicle Re-Id paradigm is designed to exploit multi-modality
data in urban surveillance such as multi-level visual features,
license plates, camera locations, and contextual information;
2) the appearance of the target vehicle is used as a coarse filter
by integrating hand-crafted features and high-level attributes
learned by convolutional neural network; 3) a Siamese neural
network is adopted to verify license number plates for precise
vehicle search; and 4) a spatiotemporal model is exploited to
further improve the search procedure. Particularly, we consider
the plates as the fingerprints of vehicles, and we just need
to verify two plate images instead of precisely recognizing
the characters. Furthermore, a spatiotemporal relation (STR)
model is designed as the context to re-rank the results.

To evaluate the proposed framework and facilitate related
research , “VeRi”, a comprehensive vehicle Re-Id dataset, is
constructed from a practical urban video surveillance system.
It includes not only large numbers of vehicles with various
annotations and sufficient cross-camera recurrences but also
plenty of license plates and spatiotemporal information. Ex-
tensive experiments on the VeRi dataset demonstrate that our
PROVID framework achieves excellent accuracy and speed.
Finally, we discuss several extension of the progressive search,
which can be utilized in various applications.

Compared with our previous works [15], [22], we propose a
Null space based Fusion of Color and Attribute feaTure model
(NuFACT), which can significantly improve the accuracy
for appearance-based vehicle search, e.g., 29.73% in mean
Average Precision (mAP) and 24.55% in HIT@]1. In [15],
[22], the texture, color, and high-level attributes are fused by
direct early-fusion or late-fusion strategy, while the NuFACT
adopts a Null Foley-Sammon Transform (NFST)-based metric
learning approach for fusion of multi-level features. It can not
only learn discriminative representation of vehicle appearance
from different viewpoints but also reduce the feature redun-
dancy (from approximately 7,000-D to 1,000-D) to guarantee
efficiency. To evaluate the adaptation ability of PROVID under
different conditions, we conduct extensive experiments on
two large-scale vehicle Re-Id datasets, i.e., VeRi [22] and
VehicleID [16]. Comprehensive experiments demonstrate that
PROVID not only dramatically improves the accuracy but also
reduces the computational cost for vehicle Re-Id.
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Fig. 3: The architecture of the PROVID framework.

II. RELATED WORK

Vehicle re-identification/search. Vehicle search, or Re-Id,
is a frontier area with limited related research in recent years.
Feris et al. [1] designed a vehicle detection and retrieval
framework. They first classified vehicles by type, size, and
color, and then organized and retrieved vehicles with a re-
lational database. Yang et al. [2] proposed the adoption of
the deep convolutional neural network for fine-grained vehicle
categorization, model verification, and attribute prediction, and
collected a vehicle image dataset, CompCars, to validate the
proposed method. Recently, Liu et al. [15] explored some
appearance features, such as the texture, color, and semantic
attributes learned by convolutional neural networks. They
also built an appearance-based model by integrating low-
level and high-level semantic features for vehicle search.
Liu er al. [16] proposed a Deep Relative Distance Learning
(DRDL) framework, which could jointly learn the feature
representation and metric mapping. Nevertheless, appearance-
based methods can hardly distinguish among similar vehicles
from the same viewpoints and identify the same vehicle under
different conditions, such as various illuminations and view-
points. Additionally, the license plate, as the distinct property
of vehicles, should be utilized to precisely identify the same
vehicle. Furthermore, existing datasets, such as CompCars [2]
and VehicleID [16], only provide the appearance labels such as
types and models, neglecting the license plate and contextual
information, which are important for vehicle Re-Id in large-
scale urban surveillance.

License plate for vehicle search. In real-world practice,
parks and highways have adopted license plate recognition
systems to identify vehicles [13], [14]. However, existing
systems require high-quality license plate images. Therefore,
the cameras are usually installed in constrained situations such
as entrances of parks or toll gates of highways, calibrated with
proper viewpoints, and require auxiliary infrastructure such as
flashlights and sensors. While in unconstrained traffic envi-
ronments, the license plate recognition system can not work
well because of uncertain factors such as various lightning
conditions and occlusions [1], [15]. Thus, we propose to verify
the license plates instead of recognizing all characters of the
plates. Recently, deep learning models, such as convolutional
neural networks (CNNs), have obtained state-of-the-art results
in many multimedia and vision tasks such as image cate-

gorization [23], object detection [24], image analysis [25],
video summarization [26], and multimedia retrieval [27]. In
particular, Bromley et al. [28] proposed a Siamese Neural
Network (SNN) for hand-written signature verification. SNN
is built with two CNNs with shared parameters to extract
discriminative features, and trained by the contrastive loss to
learn a latent space for the similarity metric. Chopra et al. [29]
employed the SNN to verify faces and achieved state-of-the-art
results. Zhang et al. [30] propose to identify persons with gait
features learned by SNN and obtain significant improvement.
Inspired by these methods, we adopt SNN to verify license
plate in our vehicle Re-Id framework.

Contextual models. Contextual information, e.g., the spa-
tiotemporal records, object locations, and topology of cameras,
has been widely exploited in multi-camera systems [18], [19],
[21]. For examples, Kettnaker et al. [18] adopted a Bayesian
estimation model to assemble likely paths of objects over
different cameras. Javed et al. [19] proposed to estimate the
inter-camera correspondence with spatiotemporal information
for cross-camera person tracking. Recently, Xu et al. [21]
designed a graph-based object retrieval framework to find per-
sons and cyclists on the campus. However, existing approaches
usually consider objects that move at low speed, such as per-
sons and cyclists. In addition, they mainly focus on constrained
environments, e.g., parks, campuses, and buildings. In an urban
area, the traffic scenes, such as roads and crossroads, are
mostly unconstrained environment with significant uncertainty
due to the complex environments and varied road topology. We
can still gain some insights from the above works to exploit
the contextual cues for vehicle Re-Id.

III. OVERVIEW OF THE PROVID FRAMEWORK

In Figure 3, we show the architecture of the PROVID
framework. In our framework, the input query is a vehi-
cle image and contextual information from the surveillance
system, e.g., the camera ID and spatiotemporal cues. With
the query, the PROVID framework can search for the same
vehicle by three procedures: 1) coarse filtering by vehicle
appearance: the framework utilizes the appearance model to
find the vehicles that have similar texture, shape, color, and
type in surveillance videos; 2) precise search by license plate
verification: with the Siamese neural network, the license plate
distances between the query vehicle and gallery vehicles are
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estimated for the filtered vehicles to match the same vehicles;
3) the spatiotemporal relation model (STR) is proposed to re-
rank the previous results and identify the optimal vehicles.

IV. VEHICLE FILTERING BY APPEARANCE
A. Multi-level Vehicle Representation

In practical vehicle search, it is effective to filter vehicles by
appearance features, e.g., texture, shape, type, and color. Be-
sides, these features can be extracted and matched efficiently
in large-scale data.

In our previous work [15], we propose to use multi-level
appearance feature as the coarse filter to search for the
vehicles that have similar appearance. For the texture feature,
we adopt the traditional Scale-Invariant Feature Transform
(SIFT) [31] as the local descriptor. Then, the bag-of-words
(BOW) model is used to quantized the SIFT descriptor because
of the efficiency and effectiveness in multimedia retrieval [32].
For the color feature, the Color Name (CN) descriptor [33]
is extracted and then encoded by the BOW for high-accuracy
person re-identification [34]. For the high-level semantic fea-
tures, we exploit a deep convolutional neural network (CNN),
i.e., the GoogleNet [35], as the feature extractor. The CNN
is pre-trained on the ImageNet dataset [36] and fine-tuned on
the CompCars dataset [2] which has been labeled with many
detailed attributes, e.g., the light shape, the number of seats,
the number of doors, and the vehicle model. Therefore, by fine-
tuning on CompCars, the model can learn many rich high-level
semantic features that are very effective for vehicle search.

B. The Null-space-based FACT Model

The FACT model in [15] adopted a post-fusion scheme
to directly sum the Euclidean distances of three types of
features extracted from vehicle images. However, it cannot
effectively integrate the complementary multi-level features.
The Null Foley-Sammon Transform (NFST) was first proposed
to address the small sample size problem in face recognition
[37]. Zhang et al. [38] proposed a Kernelized NFST for person
Re-Id by mapping the multiple features into a discriminative
null space; this method significantly outperforms the state-of-
the-art methods. In this paper, we propose a Null-space-based
FACT (NuFACT) to extract effective and robust representa-
tions for vehicle appearance.

The NFST is one type of metric learning methods; other
examples of metric learning methods include Linear Dis-
criminant Analysis (LDA) and Foley-Sammon Transform
(FST) [39]. The basic idea of the FST is to learn a projection
matrix W € R%*™ and maximize the Fisher discriminant

criterion:
w ! S,w

J(w) = (D

wTS,w’
where w denotes a column of W, and S, and S, are the
between-object scatter matrix and within-object scatter matrix,
respectively. With W, the original visual features can be
mapped into a latent metric space in which the distances of
features from the same object are much smaller than those of
features from different objects.
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Fig. 4: The appearance features of the same vehicle are
mapped to a single point by NFST.

However, NFST aims to learn a null space by adopting an
extreme restrictive constraint:

w'S,w =0, ()
w'S,w > 0. 3)

In the null space, the features of each object are collapsed to
a single point, which means the intra-object distance is zero
and inter-class distance is positive, as shown in Figure 4.

Furthermore, to learn a discriminative null space for person
Re-1d [38], Zhang er al. introduce a kernel function ®(x) to
NFST that can map the original feature x into an implicit
high-dimensional space. During learning of the discriminative
null space on the training data, the multiple features are fused
effectively and can generate a discriminative representation for
person Re-Id.

In this paper, we adopt the discriminative NFST method
to integrate the multi-level features of vehicles, i.e., texture,
color, and high-level attribute features. First, the three types of
features, X, X., and X,, are extracted from all training vehi-
cle images and concatenated to obtain the original appearance
feature as X = (X, X, X,). Then, the training features X
are kernelized by ®(x) to obtain ®(X). Finally, the projection
matrix W of the discriminative null space is learned by NFST
on ¢(X) as in [38].

In the test phase, the original features X, and X, of the
query and gallery vehicles are also kernelized with ®(x)
and mapped by W. Finally, the similarity of the query and
gallery vehicles can be measured by the Euclidean distance
in the discriminative null space. By NFST-based multi-level
feature fusion, the vehicles that have the similar appearance
to the query are obtained effectively and efficiently. After
this procedure, a small number of vehicles are extracted from
the whole database of vehicles. Nevertheless, it can hardly
uniquely match images of the same vehicle based only on
appearance features, which cannot distinguish similar vehicles
with trivial inter-class differences due to environmental factors.
In these situations, the distinct identifier, i.e., the license plate,
must be considered for precise vehicle search.
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Fig. 5: The architecture of license plate verification based on the Siamese neural network.

V. LICENSE PLATE VERIFICATION BASED ON SIAMESE
NEURAL NETWORK

As shown in Figure 2(b), the characters on a license
plate can hardly be recognized correctly in unconstrained
environments because the varied viewpoints and lightning
conditions cause the plate images to be blurry. In addition,
license plate recognition systems are usually composed of
several components such as plate detection, calibration, char-
acter segmentation, and recognition. Thus, the license plate
recognition techniques are unsuitable for the vehicle Re-Id
task. Therefore, we propose to verify the license plate instead
of recognizing the plate number for precise vehicle search.
The Siamese neural network (SNN) proposed by Bromley
et al. [28] was originally designed to verify hand-written
signatures. SNN is built with convolutional layers to discover
the feature representation and fully-connected layers to learn
a mapping function from the large number of training images.
With SNN, the discriminative features can be extracted directly
from image pairs, and then the features are mapped into a
metric space in which the distance between different objects
is large while the distance between the same objects is small.
Therefore, SNN is very suitable for tasks in which there are
large numbers of objects but the samples of all the classes are
insufficient. Decidedly, SNN can be adopted for license plate
verification which has this property.

In our framework, we designed the SNN for plate verifica-
tion as illustrated in Figure 5. Two parallel CNNs have the
same structure and share the same weights in forward and
backward computations. Each CNN is built with two convolu-
tional layers and max-pooling layers for feature representation,
and three fully connected layers to learn the metric space. The
detailed parameters are selected as shown in Figure 5. In the
training phase, a pair of license plate images is assigned a
value 1 if they have the same number and O otherwise. After
that, the contrastive loss layer takes the output features of the
last layer and the labels as the input to calculate the cost of
the model. With the Stochastic Gradient Descent algorithm,
the SNN is optimized with the contrastive loss.

In particular, we denote by W the weights of the neural
network, and by z; and zy a pair of input plates. The
features obtained by the forward propagation can be denoted

by Sw(z1) and Sy (x2). The difference between x; and xo
is denoted as
Ew (z1,22) = ||Sw(21) — Sw(x2)]]. “)

With Ew (21, 22), the contrastive loss is defined as

L(Wv (xlax%y)) = (1 - y) : max(m - EW(x17x2)70) (5)
+y - Ew (21, 22),

where (x1,22,y) is a three-tuple of two training plates and
the corresponding label, and m is a positive hyperparameter
to adjust the margin (m = 1 in our method). In our framework,
the Caffe deep learning tool [40] is adopted to implement the
SNN and train the model. In the testing phase, the output of
the second fully connected layer (FC2) in the learned SNN is
extracted as the 1,000-D feature representation for the plate
images. Finally, the similarity of two input plates is computed
by the Euclidean distance.

VI. SPATIOTEMPORAL RELATION-BASED VEHICLE
RE-RANKING

In practical vehicle search, humans usually execute the
search process in a close-to-far manner in the physical world.
Therefore, the spatiotemporal information is explored in our
progressive vehicle Re-Id framework. Nevertheless, how to
model the behavioral features of vehicles and discover the
spatiotemporal property of the same vehicle remains a signif-
icant challenge, especially in unconstrained environments and
with only video surveillance networks.

To explore the effect of spatiotemporal information for
vehicle Re-Id in unconstrained scenes, we select 20,000 pairs
of the same vehicles and 20,000 pairs of vehicles that are
picked randomly. Then, the spatiotemporal difference of each
pair is calculated for analysis. The histograms in Figure 6 show
the statistics (the spacial distances and temporal distances of
all samples are normalized to [0, 1] for better representation).
It is obvious that the pairs of the same vehicles have smaller
spatiotemporal differences than the pairs of randomly selected
vehicles. Hence, an assumption is made based on this observa-
tion: two images are more likely to be the same vehicle when
their spatiotemporal difference is small, whereas they are more
likely to be the different vehicles when their spatiotemporal
difference is large. Based on this assumption, given a pair
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of images ¢ and j, ST(i,j) is the spatiotemporal similarity

formulated as:

-1
Tmaa:

L 30, Cy)
Dmam

ST(i, ) (6)
where T; and T} are the timestamps at which the images are
captured by the cameras and 7T,,, is a global maximum value
obtained from all vehicle images captured over a long time
period. 6(C;, C;) is the physical distance between camera C;
and Cj, and Dp,,, is a global maximum distance between all
cameras. The physical distance between each pair of cameras
is obtained from a public online map services, i.e., Google
Maps, and organized as a distance matrix as illustrated in
Figure 7. In our framework, we assume the distance matrix
is symmetric which means the distances from camera C; to
C; and from camera C; and C; are equal. Finally, the spa-
tiotemporal similarity can be integrated with the appearance
and plate features using the late fusion or the top-K re-ranking
scheme for efficiency.
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VII. APPLICATIONS

In this section, we show how the progressive vehicle Re-Id
framework can be utilized in various practical applications.

A. Application I: Suspect Vehicle Search

As its core functionality, our PROVID framework can
support suspect vehicle search for vehicle and traffic manage-
ment department. Consequently, with a query vehicle image
captured by a surveillance camera, users can instantly obtain
information on where and when the vehicle has ever appeared
in the whole city. Our framework can incorporate cameras
deployed in constrained scenes in which the license plate
recognition system can be applied. Then, the vehicles can be
searched more accurately with cameras in both constrained
and unconstrained environments. With more precise license
plate information, detailed information about the vehicle can
be found by users. For example, our PROVID system can be
integrated with cameras at the park entrances or toll gates,
and then connected with the vehicle registration information
system. When security officers have an image of a suspect
car, they can first use our system to find the locations and
time at which the car appeared. Then, they can use the
license plate recognition system to obtain its license number
via the toll gate camera. With the license number, detailed
information such as the owner of the vehicle, registration
time, and criminal records can be searched from the vehicle
database in the registration system. Using this information, the
staff can manage the vehicles or investigate criminal events
more effectively and efficiently. In summary, our progressive
vehicle Re-Id system becomes a vehicle search engine for
urban surveillance networks.

B. Application II: Cross-camera Vehicle Tracking

The proposed vehicle search framework can also be applied
to track the target vehicle across multiple cameras. For exam-
ple, if the police officers want to track a suspect car in the
city, they can first specify a target vehicle in one camera from
the backend browser. Then, our progressive vehicle search
system can take the vehicle image, location, and time as
input to find the same vehicle in the neighboring cameras.
Consequently, the system can track the target vehicle from
one camera to another and obtain the route of the target. It
can provide significant assistance for criminal investigation
and urban security. Another example is live broadcasts of car
races. The car races such as Dakar Rally or Formula One are
usually broadcasted by multiple cameras. In particular, viewers
are willing to watch a specific car in videos from different
cameras at different time while all cars look very similar. With
the vehicle search system, the users or directors can specify
the car that needs to be tracked at a specific time. Then, the
system can instantly track the target car by the appearance and
unique identifiers, such as the numbers or names on the car.
In conclusion, our system can help users localize and track
vehicles across multiple cameras automatically, which is very
useful for suspect car tracking in urban surveillance and live
broadcasts of car races.
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Fig. 8: The main properties of the VeRi dataset.

VIII. EXPERIMENTS

A. Dataset

1) VeRi dataset: To facilitate related research and evaluate
the proposed progressive vehicle search framework, we build
a comprehensive vehicle Re-Id dataset, named VeRi. A total
of 20 surveillance cameras installed along several roads in
a 1.0 km? area are selected to guarantee data quality and
real-world traffic scenarios. Various scenes are captured by
the cameras, such as crossroads, two-lane roads, and four-lane
roads. The cameras record videos at a resolution of 1920 x
1080 and 25 frames per second. The cameras are installed
in arbitrary positions and directions (the orientation and tilt-
angle information is not available). In addition, overlaps exist
between part of the cameras. The construction process of the
VeRi dataset is introduced in our previous papers [15], [22].
Figure 8 shows some sample images and main statistics of the
dataset. !

The VeRi dataset has four featured properties that make it
a valuable and challenging dataset:

IThe latest version of the VeRi dataset can be obtained from

https://github.com/VehicleReld/VeRidataset.

o Large-scale data from real-world surveillance. We se-
lect continuous one-day raw videos from 20 surveillance
cameras. Then, the videos from 16:00 to 17:00 are seg-
mented from the original videos with basic compression
and transcoding. To balance quality and efficiency, one
in every five frames is extracted from the 25-fps videos
to obtain over 360,000 frames for vehicle annotation.
After the annotation in [15], we obtain approximately
50,000 images and 9000 tracks of 776 vehicles, which
guarantee the scalability for vehicle search. Each vehi-
cle is captured by at least two cameras from various
viewpoints, lightning conditions, and backgrounds which
guarantees a practical urban traffic environment, as shown
in Figure 8(a), and sufficient cross-camera recurrence for
vehicle search, as shown in Figure 8(b). The dataset is
split into a training set containing 37,781 images of 576
vehicles and a testing set with 11,579 images of 200
vehicles. From the testing set, we select one image from
each camera and of each vehicle as the query and obtain
a query set containing 1,678 images.

« Rich attribute labels. Each vehicle image in the VeRi
dataset is labeled with various attributes. First, we anno-
tate the bounding boxes (BBoxes) as well as the locations
of the vehicle images in video frames which can also be
used for vehicle detection tasks. Moreover, we annotate
10 types of colors, i.e. black, gray, white, red, green,
orange, yellow, golden, brown, and blue to label the color
of vehicles. Furthermore, each vehicle is labeled with one
of nine classes, i.e., sedan, SUV, hatchback, MPV, van,
pickup, bus, truck, and estate car. In addition, part of the
vehicles are labeled with about 30 common brands, such
as BMW, Audi, Ford, and Toyota. The statistics of colors
and types are shown in Figure 8(c).

« License plate annotation. As one of the most noteworthy
contribution of the VeRi dataset, we annotate the license
number plate if it can be detected in the vehicle image by
the annotators. For each image in the training, testing, and
query sets, we annotate the location of the license plate
and the characters if they can be recognized. At least three
annotators are asked to label each image to guarantee high
quality. Finally, 999, 4,825, and 7,647 plates are obtained
from the query, testing and training sets respectively.

o Contextual information annotation. As important con-
textual information, the spatiotemporal information of ve-
hicles, camera topology, and distances between cameras
are annotated. Firstly, we annotate the camera ID which
records the vehicle track and the time at which it is
captured. Then, the distance between each pair of cam-
eras in the surveillance system is obtained from Google
Maps, as shown in Figure 7. With the above contextual
information, the multi-modal data can be exploited for
progressive vehicle Re-Id.

2) VehiclelD dataset: Recently, Liu et al. [16] built a large-
scale dataset for vehicle re-identification named VehiclelD. It
contains images captured in the daytime by different cameras
in the traffic surveillance system of a small city. Similar to
our VeRi dataset, each vehicle appears more than one time in
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different cameras. It contains a total of 26,267 vehicles with
221,763 images, and 10,319 vehicles are labeled with models
such as Ford Focus, Toyota Corolla, and Honda Accord. To
facilitate the research, the VehicleID dataset is split into a
training set with 110,178 images of 13,134 vehicles and a
testing set with 111,585 images of 13,133 vehicles. In addition,
from the original testing data, three subsets, which contain
800, 1600, and 2400 vehicles, are extracted for vehicle search
in different scales.

There are two main differences between our VeRi dataset
and the VehicleID dataset. First, although the scale of Ve-
hicleID is larger than VeRi, the vehicles of VehicleID are
captured only from the front or the back, whereas our dataset
contains vehicle images captured by 20 cameras with various
viewpoints, resolutions, and occlusions, which can reflect
practical situations. This makes VeRi closer to a real-world un-
constrained environment and more challenging for vehicle Re-
Id. Furthermore, VehicleID can only be used for appearance-
based vehicle Re-Id or related research. In addition to vehicle
images, our dataset contains license plate annotations and
spatiotemporal information. This means that VeRi can not
only facilitate vehicle Re-Id in a surveillance network but also
provide potential value for license plate recognition, traffic
data mining, and urban computing.

B. Experimental Settings

In this paper, we first compare different appearance-based
method on both of the VehicleID and VeRi dataset. Then,
we evaluate the license-plate-based vehicle search and the
complete progressive PROVID framework on the VeRi dataset.

For VehicleID, image-to-image search is conducted because
each vehicle is captured in one image by one camera. For
each test dataset (size = 800, 1600, and 2400), one image
of each vehicle is randomly selected into the gallery set. All
other images are probe queries. To measure the accuracy of
the approaches, we adopt HIT@1, HIT@5, and Cumulative
Matching Characteristic (CMC) curve, as in [16].

For VeRi, cross-camera matching is performed, which
means that one image of a vehicle from one camera is used
as the query to search images from other cameras for the
same vehicle. In addition to the image-to-image search as for
VehicleID dataset, we also adopt an image-to-track approach,
in which the image is used as the query, while the gallery
consists of tracks of the same vehicle captured by other
cameras. A track is a trajectory of a vehicle recorded by
one camera at a time, which means the images in a track
are organized together. The similarity between an image and
a track is computed by max-pooling over images in the test
track because, in the practical search procedure of humans, it is
reasonable to find the most possible image in the track from
one camera to capture the target vehicle. Therefore, we use
1,678 query images and 2,021 testing tracks for the image-
to-track search. The CMC curve, HIT@1 (precision at rank
1), and HIT@5 (precision at rank 5) are also adopted to
evaluate the accuracy of the methods. In addition, the query
has more than one ground truth, so precision and recall should
be considered in our experiments. Hence, we also use mean
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Fig. 9: The CMC curves of different methods on VeRi.

TABLE I: The image-to-track search results on VeRi.

methods mAP HIT@l HIT@5
BOW-SIFT 1.51 1.91 4.53

LOMO [41] 9.64 25.33 46.48
BOW-CN [34] 12.20 33.91 53.69
VGG [16] 12.76 44.10 62.63
GoogLeNet [2] 17.89 52.32 72.17
FACT [15] 18.75 52.21 72.88
NuFACT 48.47 76.76 91.42

average precision to evaluate the comprehensive performance.
The average precision (AP) is computed for each query as

2k P(k) x gt(k)
AP = N,

where n and N, are the numbers of tests and ground truths

respectively, P (k) is the precision at the k-th position of the

results, and gt(k) is an indicator function that equals to 1 if

the kth result is correctly matched and O otherwise. Over all

queries, the mean Average Precision (mAP) is formulated as
a1 AP(9)

mAP = 0 ®)

in which @ is the number of queries.

)

C. Evaluation of Appearance-based Vehicle Re-1d

In this experiment, we compare eight vehicle Re-Id ap-
proaches which are evaluated on both VehicleID and VeRi.
The details of the approaches are introduced as follows.

(1) Texture based feature (BOW-SIFT). For both VeRi
and VehicleID datasets, the image is resized to 64 x 128
firstly. Then, we extract the SIFT local descriptors [31] from
the images. After that, the descriptors are encoded by the
BOW model with the pre-trained codebook (size £ = 10, 000).
Finally, we obtain a 10,000-D feature to represent the texture
of the vehicle.

(2) Local Maximal Occurrence Representation (LOMO).
LOMO is proposed as a local feature for person Re-Id that is
robust to the varied lightning conditions in practical surveil-
lance scenes [41]. We consider LOMO as the state-of-the-art
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Fig. 10: The CMC curves of different methods on VehicleID.

TABLE II: Comparison of different methods on VehicleID.

Methods Test size = 800 Test size = 1600 Test size = 2400 Average
HIT@l HIT@5 HIT@l HIT@S HIT@l HIT@5 HIT@l HIT@5
BOW-SIFT 2.81 423 3.11 5.22 2.11 3.76 2.68 3.76
LOMO [41] 19.74 32.14 18.95 29.46 15.26 25.63 17.98 3.76
BOW-CN [34] 13.14 22.69 12.94 21.09 10.20 17.89 12.09 20.56
GoogLeNet [2] 47.90 67.43 43.45 63.53 38.24 59.51 43.20 60.04
FACT [15] 49.53 67.96 44.63 64.19 39.91 60.49 44.69 64.21
DRDL [16] 4891 66.71 46.36 64.38 40.97 60.02 45.41 63.70
NuFACT 48.90 69.51 43.64 65.34 38.63 60.72 43.72 65.19

texture feature. For both the VehicleID and VeRi, we extract
the LOMO feature with the parameters given in [41] and
obtain a 26,960-D feature vector for each vehicle image.

(3) Color based feature (BOW-CN). This model is the
benchmark for person Re-Id on the Market-1501 dataset [34]
due to its robustness in outdoor scenes. It first adopts the Color
Name (CN) [33] as a local color descriptor. Similar to BOW-
SIFT, the image is resized to 64 x 128. Then, we divide the
image into 4 x 4 patches to extract the CN descriptors densely.
Before testing, a pre-trained codebook is built on VeRi and
VehicleID separately using k-means (size £k = 350). After
that, the avgIDF and geometrical priors are applied as in [34].
Finally, a 5,600-D color feature is obtained for each image.

(4) Semantic feature learned by CNN (GoogLeNet). For
VeRi, we adopt the GoogleNet model [35] pre-trained on
ImageNet [36]. As in [2], the model is fine-tuned on the
CompCars dataset, which contains images of whole and parts
of cars with rich attributes such as the number of doors, the
light shape, and the car model. The finetuned CNN model
is employed as a feature extractor for high-level attributes.
Finally, we obtain a 1,024-D feature from the last pooling
layer of the neural network to represent the semantic feature
of vehicles.

(5) Fusion of Attributes and Color feaTures (FACT). As
in [15], by combining the low-level color feature and high-
level semantic attribute, the FACT model achieves excellent
performance on the VeRi dataset. We implement the FACT
model on both VeRi and VehicleID. The fusion weights are
obtained on a small subset of the training data for validation.

(6) Deep Relative Distance Learning with VGG (DRDL-
VGG). The DRDL framework is proposed to jointly learn a

discriminative feature representation and a metric mapping
with an end-to-end CNN and achieves the state-of-the-art
results on the VehicleID dataset [16]. It adopts a mixed
network structure based on the VGG_M model [42] with a
coupled cluster loss to learn the relative distances of different
vehicles. Because the VeRi dataset does not contain model
information as VehicleID, we only evaluate DRDL-VGG on
VehiclelD.

(7) Semantic feature learned by VGG (VGG). To evaluate
different deep-learning-based models, we directly use the
VGG_M model in DRDL-VGG [16] as a feature extractor for
testing on the VeRi dataset. The 1024-D feature is extracted
from the fc_7 layer of the VGG_M model.

(8) Null space base Fusion of Attribute and Color
feaTures (NuFACT). As introduced in Section IV-B, we
concatenate the color feature and the semantic attributes to
obtain the original features of vehicles for VeRi and VehicleID
separately. Then, the projection matrix to the null space is
learned on the corresponding training sets. Finally, we evaluate
the NuFACT model on both VeRi and VehiclelD.

Table I illustrates mAP, HIT@1, and HIT@5 on VeRi,
Figure 9 shows the CMC curves. The results on VehicleID
are shown in Table II and Figure 10. From the results, we
obtain the following findings:

1) For both VehicleID and VeRi datasets, the hand-crafted
features, i.e., BOW-SIFT, LOMO, and BOW-CN achieves
relatively lower accuracy than the deep learning-based models,
i.e., GoogLeNet and VGG. This demonstrates that the features
learned by deep neural networks are more discriminative and
robust than conventional features for vehicle Re-Id. Moreover,
the fusion model of multi-level features, i.e., FACT, and the
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TABLE III: Comparison of different models for plate verifi-
cation.

Methods mAP HIT@l HIT@5
NuFACT + Plate-SIFT ~ 42.48 75.27 90.41
NuFACT + Plate-SNN  50.87 81.11 92.79

mixed neural network structure, i.e., DRDL, obtain higher
accuracy than the above single-model approaches. This shows
that the high-level attributes and low-level hand-crafted fea-
tures have complementary effects for vehicle Re-Id. Finally,
our proposed NuFACT model achieves the optimal results
on both VehicleID and VeRi. This means that, in the null
space learned by NFST, the multi-level features can be fused
effectively for vehicle Re-Id.

2) By comparison of the results on the two datasets, we
find that different methods have different characteristics. First,
the texture feature, i.e., LOMO, has better accuracy than the
color feature on VehicleID, while we obtain opposite results
on VeRi. By the examining the two datasets, we find that the
vehicle images in VehicleID are relatively larger and sharper
than the images in VeRi. More detailed texture can be extracted
from the images in VehicleID than in VeRi for the LOMO.
Besides, some of the images in VehicleID are captured at
night and are almost black in hue, while VeRi contains only
images captured in the daytime. Therefore, we can obtain more
effective color features from the images in VeRi than from
those in VehicleID. Second, NuFACT achieves much better
improvement on VeRi than on VehicleID. One reason is that
the color feature is more effective on VeRi than on VehiclelD,
so the fusion of color feature with semantic attributes can
work better on VeRi. The other reason is that each vehicle
in VeRi has many more images (64 images/vehicle) than the
vehicles in VehicleID (8.4 images/vehicle). During training of
the null space, more information such as different viewpoints,
occlusions, and resolutions can be learned on VeRi. Thus,
the NuFACT achieves greater improvement than FACT on the
VeRi dataset.

D. Evaluation of Plate Verification

In this section, we compare the plate verification based
on SNN with that based on the traditional texture features,
i.e., SIFT [31]. The plate features obtained by the above two
models are fused with the appearance features of the NuFACT
model by the late fusion to evaluate the performance. The
details of the two methods are as follows:

(1) NuFACT + Plate-SIFT. This approach uses the hand-
crafted SIFT as the basic representation. Then, the SIFT
feature is quantized by the BOW model on the whole plate
image. In the training phase, a codebook (size k£ = 1000) is
learned on the training data of the VeRi dataset. During testing,
the license plate image is extracted by the trained model as a
1000-D feature. Finally the plate feature and the appearance-
based feature are integrated by late fusion.

(2) NuFACT + Plate-SNN. This method adopts the SNN as
the feature extractor for license plate images. During training,
we first select over 100,000 plate pairs from the original 7,647
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Fig. 11: The CMC curves of different methods.

TABLE IV: Comparison of different methods on VeRi dataset.

Methods mAP HIT@l HIT@5
NuFACT 48.47 76.76 91.42
NuFACT + Plate-REC ~ 48.55 76.88 91.48
NuFACT + Plate-SNN  50.87 81.11 92.79
PROVID 53.42 81.56 95.11

plates in the training set. Half of the pairs are from the same
vehicles and are labeled with 1 as the positive samples; the
other half are from different vehicles and are labeled with O as
the negative samples. All samples are shuffled before training.
The Caffe deep learning tool [15] is adopted to implement
the SNN with the structure and parameters in Section V. The
model is optimized by Stochastic Gradient Descent algorithm
and converges after 60,000 iterations. Then, the output of the
FC2 layer (1000-D) is extracted as the feature of the license
plate images.

Similar to appearance-based search, we estimate the simi-
larity with Euclidean distance and perform the image-to-track
search. The weights for late fusion are set to 0.86 and 0.14
for the NuFACT and the Plate-SNN models respectively.

Table III shows mAP, HIT@1, and HIT@5 on the VeRi
dataset. The results show that the plate representation model
learned by the deep neural network significantly outperformed
the hand-crafted feature. Therefore, the features learned by
SNN are more robust to uncertain environmental factors such
as varied lightning conditions and low resolution. This also
demonstrates that the deep neural network has higher discrim-
inative power especially with a large amount of training data.
The effectiveness of the learned SNN is guaranteed by the use
of sufficiently many license plate images.

E. Evaluation of Progressive Vehicle Re-1d

To evaluate the performance of the progressive search
paradigm, we compare four methods on the VeRi dataset:

(1) NuFACT. We utilize the NuFACT model to calculate
the appearance similarities with the same settings as in Sec-
tion VIII-C.
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(2) NuFACT + Plate-SNN. In this method, the NuFACT is
first used to filter out the dissimilar vehicles by appearance.
The late fusion scheme is then adopted to integrate the scores
of the NuFACT model and Plate-SNN model for precise Re-
Id. The weights for the NuFACT and the Plate-SNN models
are set to 0.86 and 0.14 respectively as in Section VIII-D.

(3) NuFACT + Plate-REC. This approach uses a com-
mercial plate recognition tool (Plate-REC) to recognize the
plate characters from the plate images for the accurate vehicle
search. The weights for NuFACT and Plate-REC are set to 0.9
and 0.1 respectively as in Section VIII-D.

(4) PROVID. This is the proposed progressive vehicle
search framework, which fuses the scores of the NuFACT,
Plate-SNN, and STR models. The Euclidean distance is
adopted to compute the similarity between a query image and a
test track. The NuFACT+Plate-SNN is obtained as introduced
in Section VIII-D. The STR is computed with Equation 6.
Before late fusion, the similarity vectors are normalized to
(0,1). Finally, the two vectors are added linearly to obtain
the final scores. The weights are set to 0.85 and 0.15 for
NuFACT+Plate-SNN and STR, respectively. Towards this end,
the progressive vehicle Re-Id is achieved by comprehensively
integrating the appearance features, license plate information,
and spatiotemporal cues.

Figure 11 shows the CMC curves of the progressive search.
The mAP, HIT@1, and HIT@5 values are listed in Table IV.
From the results, we can find that:

The results indicate that the proposed framework is effective
for vehicle search with coarse filtering by appearance and
precise matching by plate verification. The coarse filtering
scheme can find most vehicles of similar shape, color, and type
to the query vehicle, especially those with similar plate images.
Moreover, after the filtering the vehicles, the framework can
match the vehicles by license plate verification to eliminate the
incorrect matches. The Plate-REC approach shows only neg-
ligible improvement because the recognition technique cannot
achieve correct results under the unconstrained conditions.
Furthermore, the PROVID framework outperforms all other
tested approaches. In particular, the proposed framework can
search the vehicles in the spatiotemporal space progressively
in a close-to-far manner. The results validate the effectiveness
of the PROVID framework as well as the significance of multi-
modal data for vehicle search in large-scale urban surveillance.

In Figure 13, we give some examples to compare efficacy
of the proposed framework and our previous methods [22]
on the VeRi dataset. For each query, the left three rows
are the results of FACT, FACT+Plate-SNN, and FACT+Plate-
SNN+STR in [22], the right three rows are the results of
NuFACT, NuFACT+Plate-SNN, and the PROVID proposed
in this paper. The three queries are hard cases in [22]. For
example (a), the methods in [22] cannot return optimal results,
even through the progressive search procedure, while the
proposed PROVID can achieve excellent results in the top-
five lists using only the appearance-based NuFACT model.
This demonstrates the effectiveness and robustness of our
NuFACT model in representing vehicle appearance. Example
(b) shows the importance of the license plate verification in
vehicle Re-Id. The vehicles with similar types and colors are
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Fig. 12: The time cost and mAP under different top-K percent.

found by the appearance features, but the correct results are
not in the top results among the vehicles. Through the license
plate verification, the target vehicles are matched precisely.
From example (c), we can find that due to the low resolution
and significant blur, the license plate verification may fail.
Nevertheless, the target vehicles are found by the contextual
information, i.e., the spatiotemporal similarity. These examples
show the superior performance of the proposed PROVID
framework compared to previous methods. However, the ex-
amples also reflect some limitations and difficulties of the
system, which mainly come from three aspects: The first
difficulty is caused by environmental factors. For example,
varied illumination makes the same vehicle have very different
colors especially in dark conditions. Moreover, the vehicle
body under the sunlight can be very bright due to specular
reflection. The second difficulty is caused by arbitrary camera
settings. For example, the cameras in an urban surveillance
system are not only installed in arbitrary locations, heights,
and orientations but also with varied parameter settings, such
as resolution, focal distance, and shutter speed. Therefore,
the vehicle images captured by these cameras could contain
significant blur, noise, and occlusion. The last difficulty is the
ambiguity in the appearances of vehicles that are made by the
same manufacturer and are of similar model and color. In this
case, the license plate is the only information that can identify
a vehicle. If the license plate is fake, occluded or removed,
the proposed method might become invalid. However, even in
these extreme conditions, PROVID can also provide valuable
assistance in finding the target vehicle with the multi-modal
information from urban surveillance.

In future work, we must explore a more discriminative
and robust representation for vehicle appearance under un-
constrained and uncertain surveillance environment, such dark
illumination or night scenes. In addition, license plate recog-
nition techniques might be fused with the verification method
by a multi-task learning framework, so the license plate
information can be utilized more comprehensively for vehicle
Re-Id.
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Fig. 13: The top-5 search results on the VeRi dataset. For each query, the left three rows are the results of the FACT,
FACT+Plate-SNN, and FACT+Plate-SNN+STR in [22], and the right three rows are the results of NuFACT, NuFACT+Plate-
SNN, and PROVID proposed in this paper. The green box denotes a true positive, the red denotes a false positive. (Best seen

in color.)

F. Time Cost of the PROVID Framework

In our PROVID framework, we can select the top-K percent
of outputs from the appearance-based filter and the license-
plate-based search as the inputs of their subsequent procedures.
To evaluate the mAP for different top-K percentages, we
implement the PROVID framework on VeRi and reduce the
percentage from 100% to 10%. To measure the time cost
under the each percentage, we add 99,029 junk tracks to the
original 2,021 test tracks to build a 50-time gallery. As shown
in Figure 12, we find that from the top-100% to top-30%,
the mAP decreases marginally while the time cost decreases
from 92.4 ms/query to 32.5 ms/query. PROVID can guarantee
optimal accuracy and reduce the time cost by 64.8% by using
the top 30% of outputs in each process as the inputs of the
next step. This demonstrates that PROVID can significantly
improve the precision and reduce the time cost of the instance-
level vehicle search in large-scale urban surveillance.

IX. CONCLUSIONS

This paper proposes PROVID, a progressive vehicle re-
identification framework based on deep learning which com-
prehensively exploits the multi-level features and multi-modal
data in urban surveillance. We employ NFST to fuse the low-
level features and the high-level attributes learned by deep
CNN as the coarse filter. The precise search is achieved
by license plate verification with Siamese neural network.
Moreover, the proposed framework utilizes the spatiotemporal
cues of the vehicles as the contextual information to re-
rank the search results. Furthermore, we collect one of the
most comprehensive dataset for vehicle Re-Id from practical
traffic surveillance videos, which provides not only a sufficient
number of vehicles but also license plates and contextual
information. The extensive evaluations on the VeRi dataset
show the excellent performance of the proposed PROVID
framework.
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