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Abstract This paper is focused on the task of searching for a specific vehicle that appears in the surveillance networks.

Existing methods usually assume the vehicle images are well cropped from the surveillance videos, and then use visual

attributes, like colors and types, or license plate numbers to match the target vehicle in the image set. However, a complete

vehicle search system should consider the problems of vehicle detection, representation, indexing, storage, matching, and

so on. Besides, it is very difficult for attribute-based search to accurately find the same vehicle due to intra-instance

changes in different cameras and the extremely uncertain environment. Moreover, the license plates may be mis-recognized

in surveillance scenes due to the low resolution and noise. In this paper, a progressive vehicle search system, named as

PVSS, is designed to solve the above problems. PVSS is constituted of three modules: the crawler, the indexer, and the

searcher. The vehicle crawler aims to detect and track vehicles in surveillance videos and transfer the captured vehicle

images, metadata and contextual information to the server or cloud. Then multi-grained attributes, such as the visual

features and license plate fingerprints, are extracted and indexed by the vehicle indexer. At last, a query triplet with an

input vehicle image, the time range, and the spatial scope is taken as the input by the vehicle searcher. The target vehicle will

be searched in the database by a progressive process. Extensive experiments on the public dataset from a real surveillance

network validate the effectiveness of PVSS.
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1 Introduction

Physical object search, which aims to find an ob-

ject sensed by ubiquitous sensor networks like surveil-

lance networks, is one of the most important services

provided by the Internet of Things (IoT)[1]. Vehicle,

including car, bus, truck, etc., is one type of the most

common objects in video surveillance networks. There-

fore the vehicle search system has many potential ap-

plications in the era of IoT. The search engines of the

Internet, e.g., Google, YouTuBe, and Amazon’s search

engine, can assist us in looking for webpages, images,

videos, and products in the information space or cy-

ber space[2], while the task of the vehicle search engine

is to find the target vehicle in the physical space[3].

The vehicle search system can provide pervasive appli-

cations such as intelligent transportation[4,5] and auto-

matic surveillance[6]. Fig.1 shows an example, in which

the user can input a query vehicle, the search area and

the time interval, and the system can return the loca-

tions and timestamps of the target.

Early vehicle retrieval methods and systems are

mainly focused on the attribute-based framework[7−9].
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Fig.1. Typical example of vehicle search. Given a specific vehicle, the time interval, and the spatial scope, the system returns where
and when the vehicle appeared in the surveillance networks. (a) Input query. (b) Result.

They first classify vehicles by types, models, and colors,

and then index and retrieve them with the assigned at-

tributes. Recently, the vehicle search research has been

focused on content-based vehicle matching, also known

as vehicle re-identification (Re-Id), which uses the con-

tent of images to find vehicles in the database[10,11].

Besides, multi-modal contextual information like spa-

tiotemporal information is also explored to assist vehi-

cle Re-Id[12−14]. With the development of representa-

tion models, such as hand-crafted descriptors and con-

volutional neural network (CNN), these methods obtain

significant improvement. However, it is difficult to pre-

cisely find the specific vehicle only based on attributes

because of the intra-instance changes in different came-

ras and the minor inter-instance differences between

similar vehicles. Furthermore, existing vehicle Re-Id

approaches assume that the vehicle images have been

well cropped and aligned from the video frames. There-

fore, they only consider the feature extraction and one-

to-N matching for the vehicle images. Nevertheless, a

vehicle search engine, as a complex system, must con-

sist of many components like vehicle extraction, repre-

sentation, indexing, and retrieval. Moreover, both the

accuracy and the efficiency should be considered when

designing the system.

Towards this end, we design a progressive vehicle

search system, named as PVSS, in this paper. PVSS

contains three key modules: the crawler of vehicle data,

the vehicle indexer based on multi-grained features, and

the progressive vehicle searcher. To guarantee high ac-

curacy and efficiency during search, a series of data

structures are designed for the vehicle search system.

In the crawler, not only visual contents but also con-

textual information are extracted from the surveillance

networks. Then the multimodal data is exploited by

deep learning based models to obtain discriminative

and robust features of vehicles, which is then organized

by the multi-level indexes. In the search process, the ve-

hicle is searched in a progressive manner, including the

from-coarse-to-fine search in the feature domain and

the from-near-to-distant search in the physical space.

At last, extensive experiments on a large-scale vehicle

search dataset collected from a real-world surveillance

network show the state-of-the-art results of the pro-

posed system.

Compared with our previous conference paper[15],

we provide more analysis on contextual information

such as the spatiotemporal information in surveillance

networks. For example, we discuss the temporal dis-

tance between neighboring cameras in the surveillance

network by analyzing the travel time of vehicles in our

collected data. We also compare the characteristics of

vehicles with those of persons which have been studied

in related work. Based on the analysis of spatiotem-

poral information of vehicles in surveillance networks,

we propose a new camera neighboring graph compared

with the previous model[15]. Particularly, in [15] we

only adopted the fixed spatial distance between neigh-

boring cameras as the weights of edges in the graph,

which is too simple to model the spatiotemporal cues.

In this new manuscript, we also use the temporal dis-

tance between neighboring cameras learned from train-

ing data to model the spatiotemporal relations, which

further improves the performance of the system.
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2 Related Work

2.1 Multimedia Retrieval

In the past two decades, content-based multimedia

retrieval (CBMR) has been extensively studied[16−21].

CBMR methods usually extract visual features from

images or videos and estimate the similarity between

the query and the source in the database. For examples,

Video Google was proposed by Sivic and Zisserman to

achieve object search in videos with the idea of webpage

retrieval[16]. Lin et al.[22] exploited the 3-D representa-

tion models for content-based vehicle search. Farhadi et

al.[23] proposed to represent the appearance of objects

by their attributes for image retrieval. Zheng et al.[24]

proposed a large-scale image retrieval method with an

effective visual model and efficient index structures. Liu

et al.[20] designed an instant video search system for

movies search on mobile devices. However, different

from the CBMR task, only depending on visual fea-

tures, i.e., the appearance of vehicles, cannot give pre-

cise results because of the minor inter-class differences

between very similar vehicles and varied intra-instance

changes in different cameras.

2.2 Person Re-Id and Search

Content-based person Re-Id has been studied for

several years[25−28]. The main topics include feature

representation of images[29,30] and metric learning for

feature embedding[31,32]. For example, Li et al.[29]

adopted the CNNs to learn discriminative features from

large-scale training data and obtained better results

than hand-crafted features. Liao et al.[30] proposed a

local maximal occurrence representation which was ro-

bust to environmental noise and achieved the best per-

formance among hand-crafted features. Zhang et al.[31]

proposed a metric learning method based on null space

which can make the samples of the same person close

and the samples of different persons distant in the fea-

ture space. Hermans et al.[32] proposed an end-to-end

deep metric learning approach by incorporating deep

CNN with a variant of the triplet loss to achieve the

state-of-the-art performance on several public datasets.

Besides person Re-Id, attributes and context informa-

tion are also used for person retrieval. For example,

Feris et al.[33] proposed a system for attribute-based

people search in surveillance environments. Xu et al.[34]

designed an object browse and retrieval system, which

integrates vision features and spatial-temporal cues by

a graph model for the retrieval of pedestrians and cy-

clists.

However, compared with the person or pedestrian,

the vehicle has its unique properties which make vehicle

search different from person Re-Id. First of all, vehicle

is a type of rigid object, which shows extreme intra-class

difference due to the varied viewpoints. Moreover, as a

mature industrial product, vehicles of the same model

have very similar appearance. Nonetheless, each ve-

hicle has a unique mark, the license plate, to identify

an instance of vehicle. Therefore, we can first find the

appearance-similar vehicles by visual feature represen-

tation and metric learning as in person Re-Id. Fur-

thermore, the license plate can be explored to uniquely

recognize a vehicle across different cameras.

2.3 Vehicle Re-Id and Search

In recent years, vehicle search has been mainly fo-

cused on content-based vehicle Re-Id, which aims to

find the target vehicle from the database with a query

vehicle image[10,11]. For example, Liu et al.[11] proposed

a deep CNN-based method, named Deep Relative Dis-

tance Learning, to jointly learn visual features and met-

ric mapping for vehicle Re-Id. Besides appearance fea-

tures, the contextual information such as license plates

and spatiotemporal records is also used for vehicle Re-

Id. For example, Liu et al.[12] proposed a progressive

vehicle search method which exploits image features,

license plates, and contextual information in a progres-

sive manner. Wang et al.[14] proposed a framework to

learn local landmarks and global features of vehicles

and refine the results with a spatiotemporal regulari-

zation model. Similar to person Re-Id, existing vehi-

cle Re-Id methods also assume that the vehicle images

have been detected and well aligned from video frames.

Therefore, they only consider the feature representa-

tion and similarity metrics for image matching. How-

ever, to build a complete search system, we consider

not only the problems for content-based vehicle Re-Id

but also the tasks of data acquisition, organization, and

retrieval.

3 Overview

Fig.2 illustrates the overall architecture of the PVSS

system. It contains three modules.

• The offline vehicle crawler receives the video

streams from surveillance cameras and crops vehicle im-

age sequences from video frames.
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Fig.2. Architecture of the progressive vehicle search system PVSS.

• The vehicle indexer extracts multi-grained visual

features from vehicle tracks and constructs the multi-

level indexes for efficient search.

• The online vehicle searcher performs the progres-

sive search process with the multi-level indexes in both

the feature domain and the spatiotemporal space.

Before introducing the details of each component,

we first present the main data structures of PVSS in

Section 4.

4 Data Structures

The data that we can utilize is diverse and in mul-

tiple modalities. Various semantic contents like vehi-

cle plates, types, colors, and visual features can be ex-

tracted in online or offline manner as in [12, 35]. The

data modalities include text, digits, coordinates, struc-

tures, and so on. The topology and spatiotemporal

context of surveillance networks can be more complex

data structures such as graphs. Therefore, these data

should be described in proper structures, which are ef-

fective for retrieval and flexible for extension. In this

section, we first introduce the vehicle track metadata,

which is to describe the image sequences of vehicles cap-

tured by surveillance cameras. Then, the camera table

is designed to index the vehicle track metadata for each

camera. At last, we build a camera neighboring graph

to represent the spatial topology of the surveillance net-

works.

4.1 Vehicle Track Metadata

According to the variety of video contents and ex-

traction approach, the vehicle track metadata is pro-

posed to describe vehicle image sequences which are

obtained from cameras. Table 1 lists the attributes and

descriptions of the metadata in detail. In our system,

the vehicle tracks are extracted by the vehicle crawler

frame by frame, which will be presented in Subsec-

tion 5.1. The object tracking method is used to group

the images of the same vehicle in neighbor frames as an

instance of vehicle track. As in Table 1, the unique cam-

era ID and vehicle ID specify a unique vehicle. Among

these attributes, the visual features are the most impor-

tant information to represent the multi-grained visual

representation of each vehicle, and are utilized in the in-

dexing and search procedures. The extraction of visual

features will be given in Subsection 5.2.

Table 1. Vehicle Track Metadata

Name Type Description

Camera ID int Unique ID of the camera that cap-
tures the track

Vehicle ID long Unique ID of the vehicle track

Frame ID long ID of the first frame in the vehicle
track

Track length int Frame count of the vehicle track

Trajectory point[] Point sequence of the vehicle track

Visual features float[] Multi-grained visual features ex-
tracted from the vehicle track

Duration float Time duration of the vehicle track

Plate string License plate string of the object (if
recognized)

4.2 Camera Table

After the generation of vehicle track metadata, the

storing and indexing of these data should be considered.

In our system, the camera table is designed to index in-

stances of vehicle track metadata for each camera.

For each camera, we allocate a camera table to index

the vehicle track metadata extracted from this camera.

The videos are processed by the order of time; therefore

the metadata instances are also generated by the order

of time and appended to the tails of camera tables.
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This keeps the entries of camera tables in ascending or-

der. Fig.3 shows the structure of the camera table. In

the real implementation, the camera table can be im-

plemented by relational databases like MySQL or dis-

tributed databases like HBase in the data center. When

the scale of camera tables grows up, the tables will be

organized in a tree-like structure for efficient index and

search.
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Fig.3. Structure of the camera table.

4.3 Camera Neighboring Graph

4.3.1 Topology Construction

The camera neighboring graph records the geo-

locations of cameras and the topology of the surveil-

lance networks, which is obtained from the infrastruc-

ture companies and the map services.

We define the graph as a directed graph G =

(N,E,W ). The graph is composed by the node set

N = {n1, ..., nC}, the edge set E = {ei,j}, and the

weight set W = {wi,j}. Fig.4 illustrates an example

of the camera neighboring graph which is built from a

subset of a real-world surveillance network. The nodes

represent the set of cameras, which consist of the GPS

coordinates and settings of cameras. The edges con-

stitute the set of directed connections between neigh-

boring cameras. The edges are determined not only by

the topology of the city roads but also by the heading

directions and fields of view (FOV) of cameras. Thus

we define the view-connected edge as below.

Definition 1 (View-Connected Edge). A view-

connected edge ei,j = (ni, nj) connects a pair of cameras

in N , and if a vehicle can reappear in the FOV of cam-

era j directly after appearing in the FOV of camera i,

then there is a view-connected edge ei,j from ni to nj.

4.3.2 Weight Modeling

The weight set W of G contains two parts. The first

part is Wt. It stores the spatial distances of neighboring

cameras, which can be obtained from map services like

Google Map. The second part is Ws which contains

the temporal distances between neighboring cameras

learned from the training data. Here we will give de-

tails about the learning of Ws.

Several studies have proposed models to estimate

the travel time in surveillance networks. The authors

of [36] proposed a graph-based vehicle search model.

According to this model, the weight of an edge is mod-

eled by the mean time cost of all vehicles that traveled

the edge during the search time. When given a search

time interval, the history records in the time interval

are used to compute the mean time cost in this time

interval. Xu et al.[34] proposed a graph model for re-
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Fig.4. Example of the camera neighboring graph. (a) Camera locations and the city map of a real-world surveillance network. (b)
Graph abstracted from the network.



Xin-Chen Liu et al.: Progressive Vehicle Search System for Video Surveillance Networks 639

lated object search in a campus. This model estimates

the time delay between cameras using object reappea-

rance. It is assumed that the speed of an object changes

slightly; therefore the time delay is negatively linearly

correlative to the travel speed. Using the labeled data

collected from the surveillance network, a linear model

of time delay and optical flow is learned with a standard

regression method.

However, according to the statistics on our dataset

as shown in Fig.5, the above two models cannot be di-

rectly applied to our scenario. We select five sequential

edges in the surveillance network and plot the records

in about one hour from 15:59:58 to 16:59:58. Fig.5(a)

shows the time cost versus object speed plots. We

can find that the time costs are not linearly correlated

with the speed of objects. Because we can only obtain

the speed in individual cameras but cannot know the

speed between cameras, the behaviors of vehicles be-

tween cameras are unpredictable with only surveillance

videos. The traffic lights, pedestrians, and traffic jams

make the actual model very complex. Thus the linear

model of time cost and speed would fail in our scenario.

Fig.5(b) illustrates the time cost versus record time

plots. From the observation on this part, we find that

in different time intervals the travel time of different ve-

hicles changes slightly. In this case, we use a slot-mean

model to build the weights. We segment the whole time

line into time slots with the fixed length. Supposing

that set C = {ck,l} contains the time cost records on

edge ei,j that fall in the time slot k. We have the mean

time cost mi,j,k:

mi,j,k =

∑|C|
l=1 ck,l

|C|
.

In each time slot k, mi,j,k is used as a parameter

of the weight function. In addition, we use τi,j,k as the

other parameter of the weight which is computed as

follows:

τi,j,k =

√

∑|C|
l=1(ck,l −mi,j,k)2

|C|
.

After computing (mi,j,k, τi,j,k) on all time slots, we

have a step function for the weight vector wi,j(x) =

(mi,j(x), τi,j(x))
T on the edge:

wi,j(x) = (mi,j(x), τi,j(x)) =

t
∑

k=1

χi,j,k(x)(mi,j,k, τi,j,k),

where

χi,j,k(x) =

{

1, if x is in time slot k,

0, otherwise,

where x is an object metadata instance in the start

camera i of edge ei,j , and t is the total number of time

slots. All weight functions on the edges constitute the

temporal weight set Wt of graph G.

5 Functional Modules

5.1 Vehicle Crawler

The vehicle crawler aims to detect and crop vehicle

images from video frames streamed by the surveillance
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network. It plays a similar role to the conventional web

crawler of the Internet search engines, which crawls and

downloads webpages from the World Wide Web.

To effectively locate the vehicles in the video frames,

we adopt the state-of-the-art deep learning based ob-

ject detection model, i.e., Faster R-CNN[37]. Faster

R-CNN contains two CNN-based parts. The first is

the region proposal network, which is a fully convolu-

tional network to generate object proposals from the

input frames. The second is a fully connected net-

work to regress the bounding boxes of objects and the

corresponding categories. To achieve precise vehicle

detection, we adopt a ResNet-50[38] based Faster R-

CNN structure which is pretrained on the ImageNet

dataset[39]. Then, the network is finetuned on large-

scale vehicle bounding boxes from surveillance videos

annotated by ourselves. After detection, a nearest

neighbor tracking algorithm is adopted to associate ve-

hicle bounding boxes of the same vehicle between neigh-

bor frames. In our implementation, the Faster R-CNN

is deployed on the GPU servers to achieve efficient ve-

hicle detection.

For each track, it is assigned a unique vehicle ID

under the corresponding camera. The first frame of the

track, the track length, and the sequence of pixel coor-

dinates are recorded into the metadata, while the track

that is shorter than 5 will be discarded. After that, we

use the off-the-shelf plate recognition tool to extract the

plate numbers with a confidence measure. If the tool

cannot recognize the plate or return a very low con-

fidence, the plate will be assigned as UNAVAL which

means unavailable. At last, the vehicle track metadata

is appended to the camera table, meanwhile the image

sequence of the track is stored on the vehicle storage

server.

5.2 Vehicle Indexer

The vehicle indexer contains two functions: the first

is multi-grained visual feature extraction, and the sec-

ond is multi-level index construction.

For the vehicle tracks, we extract the appearance-

based coarse representation and the license plate based

fine-grained feature. To learn discriminative and robust

feature of vehicle appearance, we adopt the ResNet-

50[38] pretrained on ImageNet[39] as the basic network.

The network is finetuned on the VeRi dataset[10] with

a multi task loss function, which contains a cross en-

tropy loss and a contrastive loss[40]. To learn effective

plate feature, a ResNet-18 based siamese neural net-

work for plate verification is trained on massive license

plate pairs as in [12]. The above two feature extrac-

tors are deployed on the GPU servers for efficiency. In

the implementation, we use the 2048-D “pool5” layer of

ResNet-50 and the 1024-D “conv3” layer of ResNet-18

as the appearance feature and the plate feature, re-

spectively. For the images in the track, the features

are extracted separately and fused by average pool-

ing, which means that each vehicle track has a 2048-D

coarse-grained feature and a 1024-D fine-grained fea-

ture.

After feature extraction, we build a two-level index

for vehicle tracks with the state-of-the-art approximate

nearest neighbor index algorithm, i.e., FLANN[41], due

to its high efficiency. The level-1 index is built on the

appearance feature vectors, while the level-2 is built on

the plate feature vectors.

5.3 Vehicle Searcher

In this subsection, we discuss the main procedures

of online vehicle search. Given a vehicle image cropped

by a user and a time interval, a list of candidate tar-

get vehicles and their states will be returned, as shown

in Fig.1. As mentioned above, the progressive search

contains two aspects: from-coarse-to-fine search with

multi-grained features and from-near-to-distant search

with the spatiotemporal context.

5.3.1 From-Coarse-to-Fine Feature Matching

Vehicle search is generally a one-to-N feature

matching problem, in which the similarity between the

query and the gallery is estimated and ranked to find

the most similar target vehicle to the query. During

searching, the query image or track is fed into the fea-

ture extraction module to extract its visual feature and

plate feature as in Subsection 5.2. Then the visual fea-

ture of query is searched with the level-1 index to obtain

the coarse similarity, Sc, between the query vehicle and

the gallery vehicle. Similarly, the fine similarity, Sf , is

obtained with the level-2 index using the plate feature.

With the above two similarity scores, the visual simi-

larity between the query vehicle, Vq, and one gallery

vehicle, Vg, is:

Sv = λ× Sc + (1− λ)× Sf ,

where λ is a hyper-parameter to balance the two scores.

In addition to the visual similarity, we also explore

the spatiotemporal similarity between the query and

the gallery. Given the metadata of Vq and Vg, we can
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obtain their spatial distance, Ds, and temporal dis-

tance, Dt, as

Ds = |L(c(Vq))− L(c(Vg))|,

Dt = |T (Vq)− T (Vg)|,

where c(·) is the operation to get the camera ID of a

vehicle, L(·) is the location of a camera, and T (·) is

the timestamp of a vehicle. Then, we adopt a two-layer

fully connected neural network, i.e., the multi-layer per-

ceptron (MLP), F (·), to model the spatiotemporal simi-

larity of Vq and Vg. The input and the output dimen-

sions of the two fully connected layers are (2, 64) and

(64, 1), respectively. The activation functions of the

two layers are ReLU and Sigmoid, respectively. The

spatiotemporal similarity, Sst, is denoted as

Sst = F ([Ds, Dt]),

where [·, ·] is the concatenation of two elements.

At last, to effectively integrate the visual similarity,

Sv, and the spatiotemporal similarity Sst, we exploit

a fully connected layer with sigmoid activation, G(·),

to learn the suitable fusion parameter. Therefore, the

final similarity can be computed by

S = G([Sv, Sst]).

The neural networks F (·) and G(·) are trained with the

binary cross entropy loss, which can guide the model

to determine whether the query and one gallery are

the same vehicle or not. During searching, the results

are ranked by the similarity scores {Sq,g} between the

query and the set of gallery vehicles.

5.3.2 From-Near-to-Distant Search

To achieve efficient vehicle search, we utilize the

camera neighboring graph, G, to achieve the from-near-

to-distant search. Given the camera ID of the query, we

traverse G in the breadth-first manner. It means that

the query vehicle is matched first to the vehicles in the

nearest neighboring cameras and then to the distant

ones. After each traverse of current neighboring came-

ras, a list of candidate results is returned. The results

will update with the traverse of G but the length of the

list remains constant, which guarantees that the most

similar results can be shown to users.

6 Experiments

6.1 Dataset

In this paper, we compare the proposed PVSS with

different vehicle search methods on the VeRi dataset[42].

The VeRi dataset is collected from 20 surveillance came-

ras in a real-world surveillance network, which contains

about 50 000 images and 9 000 tracks of 776 vehicles.

Each vehicle in the VeRi dataset is labeled with vari-

ous attributes, such as 10 types of colors and nine cat-

egories. Moreover, the license plate numbers of vehi-

cles are annotated for more precise vehicle search. Fur-

thermore, the contextual information, such as the spa-

tiotemporal information and the topology of the surveil-

lance network, and distances are annotated. Therefore,

it is suitable to evaluate the proposed progressive vehi-

cle search system.

6.2 Experimental Settings

As the similar settings in [42], cross-camera match-

ing is performed, which means that one vehicle image

from one camera is used as the query to search for im-

ages of the same vehicle captured by other cameras.

Vehicle matching is in a track-to-track manner, which

means units of the query set and the gallery are both

tracks of vehicles cropped from surveillance videos. In

our experiments, we use 1 678 query tracks and 2 021

testing tracks as in [42].

To evaluate the accuracy of the methods, HIT@1

(precision at rank 1) and HIT@5 (precision at rank 5)

are adopted. In addition, since the query has more than

one ground truth, the precision and the recall should

be considered in our experiments. Hence, we also use

mean average precision to evaluate the comprehensive

performance as in [42]. The average precision (AP) is

computed for each query as

AP =

∑n

k=1 P (k)× gt(k)

Ngt

,

where n and Ngt are the numbers of tests and ground

truths respectively, P (k) is the precision at the k-th po-

sition of the results, and gt(k) is an indicator function

that equals 1 if the k-th result is correctly matched and

0 otherwise. Over all queries, the mean average preci-

sion (mAP ) is formulated as

mAP =

∑Q

q=1 AP (q)

Q
,

in which Q is the number of queries.

6.3 Comparison with Vehicle Re-Id Methods

In this subsection, we first compare the appearance-

based search component in PVSS with five appearance-

based vehicle Re-Id methods. Among them, methods
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1 and 2 are two vehicle Re-Id methods, while methods

3 and 4 are two state-of-the-art approaches for video-

based person Re-Id. Then we compare the complete

progressive vehicle search system with three state-of-

the-art multi-modal data-based approaches. Vehicle

matching is achieved by computing the Euclidean dis-

tance between a pair of vehicles. The details of all meth-

ods are as follows.

1) Fusion of Color and Attribute (FACT)[10]. This

method is the baseline method on the VeRi dataset,

which integrates hand-crafted features, e.g., SIFT and

Color Name, with attributes extracted by GoogleNet.

2) Progressive Vehicle Search (Progressive)[12]. This

is a progressive vehicle search framework, which uses

appearance features and plate verification for vehicle

matching and refines the results with spatiotemporal

information.

3) Identity Feature with LSTM (ResNet + LSTM).

This approach adopts CNN+LSTM which is the state-

of-the-art method for video-based person Re-Id[43]. It

can model dynamic patterns of persons like actions and

gaits for person Re-Id.

4) Top-Push Distance Learning (TDL)[44]. This

method is one of the state-of-the-art metric learning

methods for video-based person Re-Id. We use the

visual features extracted by ResNet as basic features.

Then the TDL method is used to aggregate and map

the original features into the latent space. Finally, vehi-

cles are matched by the Euclidean distance of features.

5) Appearance-Based Search in PVSS (PVSS-App).

This is a part of PVSS, which uses only appearance fea-

tures learned by CNNs trained by a combination of the

cross-entropy loss and the contrastive loss.

6) Orientation Invariant Feature Embedding and

Spatial Temporal Regularization (OIFE + STR)[14].

This method proposes an Orientation Invariant Feature

Embedding model to learn 20 landmarks and extracts

both local and global features from vehicle images.

7) Siamese-CNN and Path-LSTM (SC + P-

LSTM)[13]. This approach exploits two ResNets[38] in

a siamese structure to learn visual features and a one-

layer LSTM to model the spatiotemporal context.

8) PROgressive Vehicle Re-ID (PROVID[42]). This

progressive vehicle search framework searches for vehi-

cles in a three-step way: appearance-based coarse filter-

ing, license plate-based fine search, and spatiotemporal

re-ranking.

9) PVSS-App-Plate. This is a part of the proposed

PVSS, which uses the appearance and plate features for

vehicle search.

10) PVSS. This is the complete progressive vehicle

search system proposed in our paper, which performs

vehicle search in a from-coarse-to-fine and from-near-

to-distant fashion.

Table 2 lists the mAP , HIT@1, and HIT@5 of diffe-

rent approaches. For appearance-only methods, we can

find that the traditional methods, i.e., FACT and Pro-

gressive, are worse than deep learning based methods.

Table 2. Results of Vehicle Re-Id Methods on VIVID

Method mAP HIT@1 HIT@5

FACT[10] 18.00 52.44 72.29

Progressive[12] 25.11 61.26 75.98

ResNet + LSTM[43] 28.11 56.20 79.14

TDL[44] 35.65 69.61 88.02

PVSS-App 51.00 85.64 95.35

OIFE + STR[14] 51.42 68.30 89.07

SC + Path-LSTM[13] 58.27 83.49 90.04

PROVID[42] 53.42 81.56 95.11

PVSS-App-Plate 61.12 89.69 96.31

PVSS 62.62 90.58 97.14

Note: The best results are in bold.

This is because the hand-crafted features cannot effec-

tively model the appearance of a vehicle and compre-

hensively represent the vehicles. By comparing LSTM-

based methods with other deep learning based models,

we can see that LSTM-based methods obtain worse re-

sults. Although LSTM can model dynamic representa-

tion from action or gait for video-based person Re-Id, it

cannot be directly utilized for video-based vehicle Re-

Id. It is noteworthy that the TDL method for person

Re-ID is better than the two baseline appearance-only

methods for vehicle Re-ID, i.e., FACT and Progressive,

which shows the effectiveness of the hand-crafted fea-

tures in TDL. But our appearance-based part in PVSS-

App achieves the best results because it adopts a multi-

task CNN which is optimized by a combination of clas-

sification loss and the contrastive loss for metric learn-

ing. By this means, the deep CNN can not only learn

robust visual features but also map the features into a

discriminative metric space in which samples from the

same vehicle become close and samples of different ve-

hicles are apart from each other.

For multi-modal methods, OIFE + STR and SC

+ Path-LSTM obtain worse results than the proposed

PVSS-App-Plate, because these two methods neglect

license plates to uniquely identify vehicles. Moreover,

by incorporating spatiotemporal context, PVSS outper-

forms other multi-modal search methods and achieves

the best results.
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7 Conclusions

This paper proposed PVSS, a progressive vehicle

search system, which can crawl and index vehicles

captured by large-scale surveillance networks and pro-

vide vehicle search services for users. For the vehicle

crawler, the vehicle detection and tracking algorithms

are adopted to crop vehicle images from surveillance

videos. Then, vehicle images are fed into the vehicle in-

dexer to extract multi-grained visual features, which are

utilized to build a multi-level index for vehicle search.

In the online search stage, the target vehicle is searched

in a from-coarse-to-fine manner with the multi-level in-

dex and in a from-near-to-distant way based on the

spatiotemporal context of the surveillance network. Ex-

tensive evaluations on the VeRi dataset showed the ex-

cellent performance of PVSS.
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