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ABSTRACT
This paper focuses on fine-grained human parsing in images. This
is a very challenging task due to the diverse person appearance,
semantic ambiguity of different body parts and clothing, and ex-
tremely small parsing targets. Although existing approaches can
achieve significant improvement by pyramid feature learning, multi-
level supervision, and joint learning with pose estimation, human
parsing is still far from being solved. Different from existing ap-
proaches, we propose a Braiding Network, named as BraidNet, to
learn complementary semantics and details for fine-grained human
parsing. The BraidNet contains a two-stream braid-like architecture.
The first stream is a semantic abstracting net with a deep yet nar-
row structure which can learn semantic knowledge by a hierarchy
of fully convolution layers to overcome the challenges of diverse
person appearance. To capture low-level details of small targets,
the detail-preserving net is designed to exploit a shallow yet wide
network without down-sampling, which can retain sufficient local
structures for small objects. Moreover, we design a group of braiding
modules across the two sub-nets, by which complementary infor-
mation can be exchanged during end-to-end training. Besides, in
the end of BraidNet, a Pairwise Hard Region Embedding strategy is
propose to eliminate the semantic ambiguity of different body parts
and clothing. Extensive experiments show that the proposed Braid-
Net achieves better performance than the state-of-the-art methods
for fine-grained human parsing.
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Figure 1: The challenges of human parsing. (a) The ex-
tremely small targets. (b) The ambiguous clothes that have
similar visual appearance. (Best viewed in color.)
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1 INTRODUCTION
Human parsing, also known as fine-grained human part segmen-
tation, is a fundamental task in multimedia and computer vision.
Human parsing is the task of pixel-level classification on human
parts or clothes, e.g., hair, face, dress, etc. It has attracted tremen-
dous attention from the community due to its potential applications
such as fashion analysis [21], person re-identification [14], event
detection [8], and image translation [6, 30]. However, the variety
of person appearance and similarity among parsing targets make
human parsing a very challenging task which needs further explo-
ration.

As a specific image segmentation task, existing human parsing
methods usually adopt the fully convolutional networks (FCNs) [27]
or encoder-decoder networks [1] for semantic segmentation as the
basic models [10, 18]. For semantic segmentation, researchers ex-
ploit atrous convolution to obtain multi-scale field-of-views on
images [38] and perform pyramid feature fusion to capture multi-
level information in FCNs [40], which significantly improve the
performance for semantic segmentation as well as human parsing.
Moreover, some researchers consider human parsing as a mask gen-
eration problem and adopt generative adversarial networks (GANs)
to obtain accurate parsing results [29, 41]. In addition, recent studies
adopt multi-task learning to exploit edges [9, 22] or key points [17]
to model the structures of body parts and clothes.
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However, existing methods for human parsing usually neglect
two challenges. The first is that the small targets may be missed,
such as the sunglasses shown in Figure 1(a). The reason is that,
as the feature maps are down-sampled through the FCNs, small
targets and details are overwhelmed by surrounding large targets
or the background. Besides, the extremely unbalanced distribution
of targets also makes the learning-based methods, i.e., FCNs, prefer
large objects. The second is the ambiguity among different body
parts and clothes due to the visual similarity of appearance, varia-
tions of poses or viewpoints, and occlusions. For example, as shown
in Figure 1(b), the upper-clothes and dress have similar texture and
shape that even humans can hardly distinguish them.

To overcome the above challenges, we propose a Braiding Net-
work, dubbed as BraidNet, for fine-grained human parsing. The
BraidNet contains a two-stream braid-like fully convolutional ar-
chitecture, which can learn both high-level semantics and detailed
structures from images. In particular, it has a semantic abstracting
net with a deep yet narrow network which exploits a bottom-up
hierarchy to abstract semantic knowledge.1 To capture low-level
details lost in the bottom-up path, we design a detail-preserving net
which has a shallow and wide structure without down-sampling
to retain sufficient local structures for small targets. Moreover, we
design a group of braiding modules to connect the layers in the two
sub-nets. The braiding modules work as a pipeline by which the
two networks can exchange complementary information during
end-to-end training.

Furthermore, we propose a Pairwise Hard Region Embedding
(PHRE) strategy for training the BraidNet to distinguish similar
targets. In other areas of multimedia, e.g., fine-grained image recog-
nition [39], pairwise metric learning is adopted to learn a latent
space to discriminate similar objects. However, the image-level met-
ric learning cannot be directly adopted into human parsing which
outputs the pixel-level dense prediction, since it is inefficient and
difficult to sample sufficient pixel pairs to learn the discriminative
metric space. Moreover, the pixel-level features can hardly provide
high-level semantic knowledge to represent the parsing targets.
Therefore, in PHRE, we first sample ambiguous region pairs based
on a graph which models the ambiguity relationships among dif-
ferent targets. For a pair of images with ambiguous regions, we
propose a hard-aware regional representation to measure their
distance in the metric space. During training, the PHRE can pull
samples of the same class closer while making samples of differ-
ent classes scattered, especially for the ambiguous classes. Finally,
the BraidNet is optimized with both pixel-level supervision and
regional metric learning for human parsing.

In summary, the contributions of this paper include:
• We propose a Braiding Network with two parallel sub-nets
for human parsing. One sub-net is a deep and narrow-down
network to learn semantic knowledge. The other is a shallow
but wide network to capture local structures from images.

• To effectively explore semantics and local structures, we de-
sign the braiding module to exchange information between
the two sub-nets, which makes the BraidNet learn robust
and discriminative features, especially for small targets.

1In this paper, the "narrow" and "wide" indicate the size of feature maps from convolu-
tion or pooling layers, instead of the convolution kernel numbers as other papers.

• We design a PHRE strategy which can make the BraidNet
learn to differentiate ambiguous parsing targets through a
hard-aware regional metric learning scheme.

Through extensive experiments on two public benchmarks, the
proposed BraidNet outperforms the state-of-the-art methods.

2 RELATEDWORK
Semantic Segmentation. Semantic segmentation has achieved
significant improvement since convolutional neural networks (CNNs),
especially FCNs, are explored to learn a pixel-to-pixel mapping from
large-scale data [27, 31]. Recent FCN-based methods achieve excel-
lent results for multi-scale objects, especially small targets, by well-
designed convolution kernels [4, 38] and/or integrating multi-scale
features from one layer or cross multiple layers in FCNs [2, 3, 40].
For example, Yu and Koltun proposed the atrous convolution to
learn robust features for varied scales [38]. Dai et al. proposed
a deformable convolutional network with deformable kernels to
learn effective features for objects with varied shapes and scales [4].
Zhao et al. proposed a pyramid pooling module to aggregate con-
textual information with different scales and achieved excellent
results on scene parsing [40]. Chen et al. proposed an atrous spatial
pyramid pooling (ASPP) module to apply multi-scale atrous convo-
lution on one feature map, which could capture both details and
context in one layer [2]. Chen et al. integrated the encoder-decoder
network with the ASPP module to combine multi-level features in
both intra-layer and cross-layer manners and obtained the state-
of-the-art performance on semantic segmentation [3]. Although
above methods provide principles of designing networks for human
parsing, these methods only perform multi-scale feature learning
in one single FCN. The detailed structures and small targets could
be still overwhelmed by hierarchical down-sampling due to the
convolutions with stride larger than one and the pooling operations.
Therefore, we propose a two-stream framework which has one FCN
for semantic context and the other FCN for local details and small
targets. By a series of braiding modules, the two networks can
exchange complementary information and learn a discriminative
representation for human parsing.

Human Parsing. Although human parsing is a specific task of
semantic segmentation, researchers have delved into the unique
characteristics of human body and clothes, and proposed elaborated
models for both single human parsing [5, 17, 18, 28, 29, 36, 37] and
instance-level multiple human parsing [9, 22, 41, 42]. For example,
in the early years, researchers proposed to parse clothes by tem-
plate matching and retrieval based approaches [36, 37]. The key
points of human body were explored to provide structural infor-
mation for human parsing [17, 37]. Recently, Luo et al. adopted a
generative adversarial network (GAN) with a macro discriminator
and a micro discriminator to make the generator output robust
parsing results [29]. Zhao et al. proposed a hierarchy of three GANs
to generate foreground, instance, and body parts for instance-level
human parsing.[41]. Gong et al. proposed a part grouping network
to simultaneously generate the parsing masks and edges of persons
for instance-level human parsing[28]. Luo et al. proposed a trusted
guidance pyramid network supervised by multi-level supervision
during training [29]. Liu et al. proposed to jointly generate the
masks and edges of parsing targets by multi-task learning, which
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Figure 2: The overall architecture of the Braiding Network with Pairwise Hard Region Embedding. The upper network is the
semantic abstracting net. The lower one is the detail-preserving net. (Best viewed in color.)

achieved the state-of-the-art results for human parsing[22]. Never-
theless, these methods neglect the ambiguity among different body
parts and clothes due to their appearance similarity, varied posed,
and occlusion. Therefore, we propose the Pairwise Hard Region
Embedding for BraidNet to learn discriminative representations
and eliminate the ambiguity in fine-grained human parsing.

3 APPROACH
3.1 Overview
The overall architecture of the Braiding Network with Pairwise
Hard Region Embedding is shown in Figure 2. The BraidNet has two
FCN-based networks: the semantics abstracting net and the detail-
preserving net. The former has a narrow-down architecture as
regular FCNs to learn high-level semantics, i.e, the classes of objects,
from raw pixels. While the latter is a wide FCN without down-
sampling to preserve local structures. To effectively explore the
semantics and details, we design the Braiding Modules between the
two networks, which can make them exchange information during
training. Moreover, the BraidNet is optimized by a novel Pairwise
Hard Region Embedding strategy which makes the network learn
to differentiate ambiguous targets. Next, we present the detailed
structures of the BraidNet and the Braiding Module, then introduce
the PHRE strategy.

3.2 Braiding Network For Human Parsing
Semantic Abstracting Net. The global semantics of targets is im-
portant to guarantee complete and continuous parsing results. For
example, we can easily recognize a complete T-shirt rather than
only a small path of cloth. To accurately segment a fine-grained
part, the model should know the shape, position, and surrounding
from the global view. As shown in Figure 2, we adopt the PSP-
Net [40] as the semantic abstracting net in our BraidNet, since the
pyramid pooling module (PPM) of PSPNet can effectively aggregate
multi-scale semantic context. Moreover, the PSPNet has a concise
structure without other branches, which makes the framework
easy for optimization. As in [40], we adopt the ResNet-101 [12]

Table 1: The architecture for the detail-preserving net.

Layer Name Output Size Kernel Size & Number
Conv1 192 × 192 7 × 7, 64
Conv2 192 × 192 3 × 3, 128
Conv3 192 × 192 3 × 3, 128
Conv4 192 × 192 3 × 3, 256
Conv5 192 × 192 3 × 3, 20

pretrained on ImageNet dataset [34] as the backbone. The last con-
volution stage of the backbone is connected with a four-level PPM
which has pooling kernels of 1 × 1, 2 × 2, 3 × 3, and 6 × 6, respec-
tively. At last, one deconvolution layer and one convolution layer
are adopted to decode the semantics and output the dense predic-
tion. Through the hierarchical narrow-down structure of ResNet
and pyramid pooling on the high-level feature maps, the semantic
information is abstracted from images for human parsing.

Detail-Preserving Net. In conventional CNNs or FCNs, the
size of input images and feature maps shrink during forward prop-
agation due to the convolution with stride larger than one and the
pooling operations. This may make the detailed structures, such as
the edge, blurred and the small targets like shoes and sunglasses
overwhelmed. To overcome this problem, existing methods usually
adopt encoder-decoder architecture which directly concatenates
the low-level feature maps to the high-level ones [22, 38]. However,
the multi-level features are still learned by the same network and
should be further explored. Therefore, we design a detail-preserving
net without down-sampling to guarantee high-resolution of feature
maps. The detail-preserving net contains five convolution layers as
shown in Figure 2. At the tail of the network, the softmax operation
is adopted to obtain the dense prediction. The parameters of each
layer are listed in Table 1. The strides of all convolution layers are
set to 1 to keep the size of feature maps fixed.

Braiding Module. As mentioned above, the semantic abstract-
ing net and the detail-preserving net are adopted to learn semantic
context and local structures, respectively. How to effectively exploit
these knowledge is still a problem. One straight-forward way is to
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Figure 3: The structure of braiding module.

combine the results of the two networks by late fusion. Another
scheme is by mid fusion which integrates the last feature maps of
the two networks and output one parsing result from the fused
feature. However these two strategies cannot effectively discovery
the complementary information. Therefore, we design the braiding
module between the two networks, as shown in Figure 2.

The structure of the braiding module is shown in Figure 3. There
are two data streams in the braiding module. In the first stream (the
blue line in Figure 3), the S × S ×C1 feature map from the semantic
abstracting net is up-sampled to 2S×2S×C1 by a deconvolution layer
with stride=2. Then the up-sampled feature map is concatenated
with the 2S × 2S ×C2 feature map from the detail-preserving net to
obtain a 2S×2S×(C1+C2) one. At last, through a three-layer channel
attention operation, we obtain a 2S × 2S ×C ′

2 feature map as the
input of the next convolution layer in the detail-preserving net. The
second stream (the red line in Figure 3) has similar operation except
that the feature map from the detail-preserving net is first down-
sampled by a convolution layer with stride=2, and its output is a
S ×S ×C ′

1 feature map for the next layer of the semantic abstracting
net. Theoretically, the braiding module can be inserted between
any pair of convolution layers in the two networks. Because we aim
to exchange high-level semantics and local details between the two
networks. In our implementation, we insert one braiding module
between the last two convolution layers of the two networks. The
other braiding module is embedded between the Conv3 and Conv4
in the semantic abstracting net, and between Conv2 and Conv4 in
the detail-preserving net, as shown in Figure 2.

In summary, our Braiding Network has a semantic abstracting
net to learn high-level knowledge about the parsing targets and a
detail-preserving net that is focused on local structures and small
objects. With the braiding module, the complementary information
is exchanged between the two networks. Therefore, the multi-level
features can be effectively aggregated for accurate human parsing.

3.3 Pairwise Hard Region Embedding
As discussed in Section 1, one of the main challenges of fine-grained
human parsing is the similarity among parsing targets due to the

ambiguity of objects under different viewpoints, poses, and occlu-
sions. Typical examples include left and right arms/legs/shoes, coat
and upper-clothes, skirt and pants, etc. In other areas of multimedia
and computer vision, such as image retrieval [25, 39], face recogni-
tion [23, 35], zero-shot learning [7], and object re-identification [13,
24], feature embedding by metric learning has been widely adopted
to solve the problems of the intra-class difference and the inter-
class similarity. For semantic segmentation, Kohl et al. proposed
a probabilistic U-Net to segment lung abnormality images [15].
Rui et al. proposed a point-based distance metric learning method
to segment images with only a few point annotations [32]. Existing
metric learning methods usually apply constraints on the distance
between features of image pairs to learn an embedding space in
which the inter-class distance is much larger than the intra-class
distance. However, this scheme cannot be directly adopted to hu-
man parsing, since human parsing has pixel-level output and label.
It is difficult and inefficient to sample sufficient pixel pairs dur-
ing training. Moreover, pixel-level features contain little semantic
knowledge to differentiate similar targets. Therefore, we propose a
Pairwise Hard Region Embedding strategy which focuses on am-
biguous regions by metric learning. The PHRE contains two main
processes: ambiguous region pair sampling and hard-aware region
embedding, as shown in Figure 4.

Ambiguous Region Pair Sampling. For metric learning, the
most important procedure is to sample positive pairs of images
which contain the same type of parsing target, and negative pairs of
images that have ambiguous targets. We first define an ambiguous
graph G with the assistance of an off-the-shelf semantic segmenta-
tion method, i.e., PSPNet [40]. Given a human parsing dataset such
as LIP [10] or CIHP [9], the PSPNet is trained on the training set to
obtain a base model. Then, we utilize the PSPNet to obtain parsing
results on the validation set. Based on the results, a normalized
confusion matrix is calculated to measure the ambiguity between
each pair of classes. We let each parsing class as the node of G and
add a directed edge between a pair of classes if their confusion
rate is larger than a threshold τ . After that, we discard the isolated
nodes with no ambiguous neighbor and obtain the finalG , as shown
in Figure 4. Given G, we can first sample an image Ia , with class
ca ∈ G , as the anchor, then sample an image Ip with the same class
ca ∈ G to build a positive pair and an image In with a different
class cb ∈ G to obtain a negative pair. In the next embedding pro-
cedure, we consider a positive pair and a negative pair as a triplet
TI =< Ia, Ip , In > with the ground truth maps TY =< Ya,Yp ,Yn >.

Hard-aware Region Embedding.During training of the Braid-
Net, we perform the hard-aware region embedding only for the
semantic abstracting net since it can learn semantic knowledge of
parsing targets. To measure the region-to-region distance in our
embedding method, we need an effective regional feature repre-
sentation. As shown in Figure 4, we feed an image I ∈ TI into the
semantic abstracting net to obtain the feature maps of the last con-
volution layer, denoted as f (I ) ∈ Rw×h×k , and obtain the predicted
probability maps of the softmax layer, denoted as Ŷ ∈ Rw×h×C ,
where h andw are the width and height of image I , k is the channel
number of the feature map f (I ), and C is the number of classes.
After that, given the target class c of image I and the predicted
probability map Ŷ ∈ Rw×h×C , we can obtain a hard-aware mask
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M ∈ Rw×h by:
Mi , j = 1(Ŷi , j ,c < δ ), (1)

where δ is the hard-aware threshold, 1(·) returns 1 if the input
is true, and 0 otherwise. With the mask M and the feature map
f (I ) ∈ Rw×h×k , we can calculate the regional feature fr (I ) ∈ R

k

by channel-wise global average pooling as:

д(f (I )k ,M) =

∑w
i=1

∑h
j=1 f (I )k ⊙ M

|M |
,

fr (I ) = [д(f (I )1,M),д(f (I )2,M), . . . ,д(f (I )k ,M)],

(2)

where f (I )k is the k-th channel of the feature map f(I) and ⊙ is
the element-wise multiplication. By this means, we can denote the
regional features of images in TI as Tr =< fr (Ia ), fr (Ip ), fr (In ) >.
Next, a hard-aware region embedding loss Lr can be calculated as:

Lr =max(0, | | fr (Ia ) − fr (Ip )| | − | | fr (Ia ) − fr (In )| | +m)

+ α · | | fr (Ia ) − fr (Ip )| |,
(3)

where | | · | | is the L2 norm,m is a margin to control the constraint,
α is a hyper-parameter to balance the constraint on inter-class and
intra-class distances.

Moreover, for conventional semantic segmentation and human
parsing, the pixel-level cross entropy loss is usually adopted to
optimize the networks. Therefore, we also adopt the pixel-to-pixel
class label as the basic supervision to compute the pixel loss, which
is formulated as:

Lp =
h×w∑
i=1

C∑
c=1

−Yi ,c loд(Ŷi ,c ), (4)

where H andW are the width and height of the input image, C is
the number of classes, yi ,c is the ground truth probability of class
c at the i-th pixel, and ŷi ,c is the predicted probability of class c
at the pixel. Finally, we optimize the BraidNet by the combination
of hard-aware region embedding loss and the cross entropy loss,
which is formulated as:

L = Lp + β · Lr , (5)
where β is a hyper-parameter to balance the two types of losses.

4 EXPERIMENTS
4.1 Datasets and Experimental Setting
In our experiment, we first compare our BraidNet with the state-
of-the-art single human parsing methods and conduct the ablation
study on the LIP dataset [10]. Then we integrate our method with
the instance segmentation method, i.e., Mask R-CNN [11] to evalu-
ate multi-human parsing on the CIHP dataset [9].

The LIP dataset has 50,462 images for single human parsing.
Each image contains one person or a part of one person with pixel-
level annotation. The images are annotated with 19 semantic human
parsing targets and one background class. The dataset is divided
into 30,462, 10,000, and 10,000 images for training, validation, and
testing, respectively. All compared methods are trained on the
training set and evaluated on the validation set, since the testing set
is held by the authors for the LIP challenge. We adopt pixel accuracy
(Pixel Acc), mean accuracy (Mean Acc), and mean intersection over
union (mIoU) for single human parsing following [10].

The CIHP dataset contains 38,280 images for multiple human
parsing. Each image contains more than one person. Each person
in one image is annotated with not only 20 semantic parts but also
a unique instance-level ID. As in [9], we use mIoU to evaluate the
performance of region-level parsing The mean average precision
at different IoU thresholds (APrIoU ) and mean of APr over IoU
∈ [0.1, 0.9] with 0.1 interval (APrvol ) are calculated for instance-
level human parsing.

4.2 Implementation Details
This section presents the details on data preparation and training
strategy of the networks.

Data Preparation. For single human parsing, the input image
for the BraidNet is 384 × 384. During training, we adopt random
scaling, random rotation, horizontal flipping, and random crop-
ping/padding for data augmentation following the strategies. For
ambiguous region pair sampling in Section 3.3, the threshold τ in
building the ambiguous graph G is set to 0.1 The topology of the
graph used to sample image pairs from the LIP dataset is shown in
Figure 5.
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Figure 5: The topology of the ambiguous graph for the LIP
dataset.

Networks Training. Before training the whole network of
BraidNet, we first train the semantic abstracting net with cross en-
tropy loss by the Stochastic Gradient Descent (SGD) optimizer [16]
for 100 epochs. The initial learning rate (LR) is set to 0.01 and ad-
justed by the "ploy" policy as in [2]. After that, we train the whole
BraidNet with the loss function in Equation 5 by the SGD optimizer
for 50 epochs. The LR is set to 0.05 and adjusted by the "ploy" policy.
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DeepLab [2] 84.1 59.8 66.2 28.8 23.9 65.0 33.7 52.9 37.7 68.0 26.1 17.4 25.2 70.0 50.4 53.9 39.4 38.3 27.0 28.4 44.8
PSPNet [40] 86.1 63.5 68.0 39.1 23.8 68.1 31.7 56.2 44.5 72.7 28.7 15.7 25.7 70.8 59.7 62.3 54.9 54.5 42.3 42.9 50.6
MMAN [29] 84.8 57.7 65.6 30.1 20.0 64.2 28.4 52.0 41.5 71.0 23.6 9.7 23.2 69.5 55.3 58.1 51.9 52.2 38.6 39.0 46.8
JPPNet [17] 86.3 63.6 70.2 36.2 23.5 68.2 31.4 55.7 44.6 72.2 28.4 18.8 25.1 73.4 62.0 63.9 58.2 58.0 44.0 44.1 51.4
CE2P [22] 87.4 64.6 72.1 38.4 32.2 68.9 32.2 55.6 48.8 73.5 27.2 13.8 22.7 74.9 64.0 65.9 59.7 58.0 45.7 45.6 52.6
BraidNet (ours) 88.0 66.8 72.0 42.5 32.1 69.8 33.7 57.4 49.0 74.9 32.4 19.3 27.2 74.9 65.5 67.9 60.2 59.6 47.4 47.9 54.4

4.3 Single Human Parsing
To validate the effectiveness of the proposed BraidNet with PHRE
strategy, we compare it with several state-of-the-art methods on
the LIP dataset. The details of methods are as follows:

1) Pyramid Scene Pooling Network (PSPNet) [40]. The PSP-
Net is one of the state-of-the-art frameworks for semantic seg-
mentation. It represents the FCNs that adopt multi-scale feature
pooling in one single network. We implement the PSPNet with
ResNet-101 [12] as the backbone for single human parsing.

2) DeepLab [3]. The DeepLab is also one of the state-of-the-art
semantic segmentation method. It adopts the atrous convolution
with different dilation rates to capturemulti-scale features. DeepLab
also uses the conditional random field to refine segmentation results.
We directly use the parsing results of DeepLab on LIP in [17].

3) Joint Parsing & Pose Estimation Network (JPPNet) [17].
JPPNet has amulti-task learning framework for both human parsing
and pose estimation. It adopts ResNet-101 [12] as the backbone of
the network. We also refer to the results on the LIP dataset in [17].

4)Macro-MicroAdversarial Network (MMAN) [29]. MMAN
is a generative model for human parsing. It adopts the GAN-based
framework which has one generator using the DeepLab as the
backbone to output parsing results and two discriminators to con-
centrate on macro features and micro details, respectively.

5) Context Embedding and Edge Preserving (CE2P) [22].
CE2P is the state-of-the-art human parsing approach on the LIP
dataset. This method utilizes the PSPNet as the basic model. The
authors adopts a context embedding branch to combine low-level
features with the context features. CE2P also has an edge preserving
branch to make the results have sharp edges and details.

6) CE2P (w flip) [22]. Different from other methods, this is
the CE2P while applying horizontal flipping on the input image
during testing. The final result is the combination of results from
the original input and the flipped image. We refer to the results
from [22].

7) Braiding Network (BraidNet). This is our proposed Braid-
ing Network with Pairwise Hard Region Embedding.

The Pixel Acc, Mean Acc, and mIoU of these methods are listed
in Table 3. We can first find that the general method for semantic
segmentation, i.e., DeepLab and PSPNet, are relatively worse than
human parsing methods. Because these method does not consider
specific characteristics of human parsing task. They can be adopted
as the baseline or basic model for human parsing method. Since
MMAN utilizes DeepLab as the backbone to build a GAN for parsing

Table 3: Comparison of the state-of-the-art single human
parsing methods on the LIP dataset.

Method Pixel Acc Mean Acc mIoU
DeepLab [2] 84.09 55.62 44.80
PSPNet [40] 86.23 61.33 50.56
MMAN [29] - - 46.81
JPPNet [17] 86.39 62.32 51.37
CE2P [22] - - 52.56
CE2P (w flip) [22] 87.37 63.20 53.10
BraidNet (ours) 87.60 66.09 54.42

mask generation, it obtains the better result than DeepLab. How-
ever, it is still worse than other methods since the GAN framework
may be difficult to be optimized for dense prediction task. More-
over, the JPPNet achieves the better result than general semantic
segmentation methods with a large margin. This proves that the
pose estimation task can effectively improve human parsing by
joint learning. The CE2P has the better results than above methods,
as it adopts a PSPNet-based FCN with a context embedding branch
to combine multi-level features and an edge preserving branch to
capture more details near to the edge. Finally, our BraidNet outper-
forms the state-of-the-art methods, even the CE2P with flipping.
The results demonstrate that the BraidNet can learn robust and
discriminative representation for human parsing.

Table 2 lists the comparison of per-class and mean IoU results
by which we may find more interesting phenomenons. First of
all, for all methods, large parsing targets such as hat, hair, upper-
clothes, pants, face, and arms are easier for parsing. One reason
is that large targets usually have more pixel samples for training
a deep network. The other is that large targets may overwhelm
small objects in forward propagation of convolution networks. The
second finding is that the classes with scarce samples obtain poor
results, even for large objects like dress, jumpsuit, and skirt. At
last, we can find that our method achieves significant improvement
for several difficult classes, e.g., glove, dress, jumpsuit, and skirt.
This demonstrates that our Pairwise Hard Region Embedding can
make the BraidNet learn more discriminative features for these
ambiguous parsing targets.

4.4 Ablation Study on BraidNet
In this section, we provide analysis on the marginm in Equation 3
during training the modules in the BraidNet.
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Figure 6: Visualization of parsing results on the LIP dataset.

We first provide the analysis on the margin in PHRE, as listed in
Table 4. As discussed in Section 3.3, the marginm is a constraint be-
tween inter-class distance and intra-class distance. From the results,
we find thatm = 2.0 is suitable for our task. Small margin cannot
push the samples from different classes to separate. While too big
margin will make the network difficult to optimize. Therefore, we
selectm = 2.0 in our implementation.

We then conduct the ablation study on the BraidNet. The combi-
nations of the semantic abstracting net, the detain preserving net,
the braiding Module, and the PHRE are as follows:

1) Semantic Abstracting Net (SAN). This is the SAN with the
modified PSPNet as the backbone which is trained by the cross
entropy loss.

2) detail-preserving Net (DPN). This is the DPN trained by
the cross entropy loss.

3) SAN + DPN. The outputs of SAN and DPN are directly fused
with the weight of 0.5 : 0.5.

4) BraidNet without PHRE (BraidNet w/o PHRE). This is
our BraidNet which adopts the braiding module to connect SAN
and DPN. We use the cross entropy loss to train this framework.

Table 4: Analysis on the margin in PHRE.

Margin Pixel Acc Mean Acc mIoU
1.0 87.56 65.55 54.06
2.0 87.60 66.09 54.42
3.0 87.50 65.64 54.00
4.0 87.52 65.31 53.91
5.0 87.49 65.42 53.79

Table 5: The ablation study of BraidNet on the LIP dataset.

Method Pixel Acc Mean Acc mIoU
SAN 86.23 61.33 50.56
DPN 59.81 10.27 7.10
SAN + DPN 85.52 53.62 46.96
SAN w PHRE 86.36 63.42 51.73
BraidNet w/o PHRE 87.44 64.13 53.19
BraidNet 87.60 66.09 54.42

5) SAN with PHRE (SAN w PHRE). In this scheme, we train
the SAN with the pairwise hard region embedding.

6) BraidNet. This is the whole framework of Braiding Network
with Pairwise Hard Region Embedding.

The results of the ablation study are listed in Table 5. From the
comparison of SAN and DPN, we can find that DPN has very poor
results. Because the DPN is focused on local details, while SAN
concentrates on high-level semantics. This shows that semantic in-
formation is more important than texture for human parsing, since
it is a pixel-level classification task which needs more semantics.
The BraidNet without PHRE is better than late fusion of SAN and
DPN. This means that the direct combination of the outputs can
hardly effectively exploit the semantics learned by SAN and the
details from DPN. While the braiding module in the BraidNet pro-
vides a bridge to exchange complementary information between
the two sub-nets. At last, by comparing SAN and BraidNet w/o
PHRE with the SAN w PHRE and BraidNet, we can see that the
proposed PHRE can play an important role to improve the parsing
results. The ablation study can demonstrate the effectiveness of
each module in our BraidNet.

We also show some parsing results of SAN, BraidNet without
PHRE, CE2P [22], and the BraidNet in Figure 6. Overall, our Braid-
Net and CE2P achieve competitive results under varied human
poses and viewpoints, as shown in Figure 6(a) and (b). While the
BraidNet performs better for details and some ambiguous target.
For instance, in Figure 6(c) and (d), the BraidNet can effectively
distinguish jumpsuits from upper-clothes and accurately generate
the edges of hands, gloves, hat, and hair. Moreover, our BraidNet
obtains excellent parsing result on low-resolution images like Fig-
ure 6(e), while the CE2P almost fails on this condition. In addition,
all methods have the capacity of generalization, as shown in Fig-
ure 6(f). Although there are some noisy images with mistakes of
annotation in LIP, the models can also output correct results.

By comparing SAN with the two BraidNet, we can see that the
results of SAN have more smooth edges and miss some small tar-
gets, while the results of BraidNet have more details. This not only
demonstrates the effectiveness of the detail-preserving net which
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CNN on the CIHP testing dataset.

can capture more details but also validates that the braiding module
can comprehensively exploit the semantics and the details from the
two networks of the BraidNet. Finally, the PHRE strategy further
improve the performance of the BraidNet, which can differentiate
the similar parsing targets.

4.5 Multiple Human Parsing
Our BraidNet can be seamlessly integrated with the off-the-shelf
instance segmentation framework to perform instance-level mul-
tiple human parsing. In this section, we directly adopt a Mask
R-CNN [11] trained on MS-COCO dataset [19] to segment human
instances from images. For each segmented instance, we utilize
the BraidNet to obtain the human parsing result. Moreover, we
also take the whole image as the input for the BraidNet to obtain a
global parsing result. At last, the instance-level and global results
are combined by late fusion. We compare our results with several
state-of-the-art methods on the CIHP testing set. The details of
methods are as follows:

1) Part Grouping Network (PGN) [9]. The PGN represents the
detection-free framework for multiple human parsing. It contains
a multi-task deep FCN to output the instance-diagnostic parsing
result and the contours of the human instances simultaneously.
Finally, an instance partition process is employed to obtain the final
instance-level parsing results.

2)M-CE2P [22]. TheM-CE2P is the state-of-the-artmulti-human
parsing method, which integrates the CE2P with Mask R-CNN [11].
For fairness, we use adopt same Mask R-CNN model as our method
to segment instance for M-CE2P. Then, we use the global parsing
and two local parsing models released by the authors of [22] for
human parsing. The results of the three models are aggregated and
refined to obtain the final results as in [22].

Table 6: Comparison of the state-of-the-art multiple human
parsing methods on the CIHP set.

Method mIoU APr0.5 APr0.6 APr0.7 APrm
PGN [9] 55.80 35.80 28.60 20.50 33.60
M-CE2P [22] 59.50 48.69 40.13 29.74 42.83
BraidNet+Mask R-CNN 60.62 48.99 41.67 32.71 43.59

3) BraidNet + Mask R-CNN. This is our framework for multi-
ple human parsing.

The results of the methods are listed in Table 6. From the results,
we can see that our method and M-CE2P achieves much better
results than PGN. This proves that the top-down framework, i.e.,
first detecting and segmenting person instance then parsing human
parts, is more effective than the detection-free method. Moreover,
our framework outperforms M-CE2P and achieves the state-of-the-
art results on the CIHP dataset. In particular, the BraidNet has better
performance under large IoU thresholds, which demonstrates the
effectiveness of our approach. At last, we also show several parsing
results of our method on the CIHP dataset, as shown in Figure 7. We
can find that our method also obtains excellent results for multiple
human parsing, especially for the small instances. However, there
are also some failure cases, as shown in Figure 7 (c) and (d). The
main reason is the occlusion and intersection between body parts
of different persons.

In the future work, we will further explore how to effectively
aggregate the results of instance-level segmentation and the part-
level parsing by considering the global and local relations among
human parts [26, 33]. Furthermore, our method may also be applied
to video human parsing by adopting efficient models with temporal
information for video analysis [20, 42].

5 CONCLUSION
In this paper, we propose a Braiding Network, named as BraidNet,
with Pairwise Hard Region Embedding strategy for fine-grained
human parsing. To learn discriminative representation, the Braid-
Net has two parallel sub-nets to model semantic knowledge and
local structures, respectively. Specifically, the semantic abstracting
net contains a narrow-down architecture to learn high-level seman-
tics from pixels. While the detail-preserving net has a wide but
shallow structure without down-sampling to capture more detailed
texture for small objects. Moreover, an elaborated braiding mod-
ule is inserted between the two sub-nets to make them exchange
complementary information during training. Furthermore, we pro-
pose a pairwise PHRE strategy which can discover the ambiguous
parsing targets with regional embedding. Therefore, our BraidNet
can effectively exploit the multi-level information to learn a robust
representation for fine-grained human parsing. In addition, the
BraidNet can be seamlessly integrated with instance segmentation
method for the instance-level multi-human parsing task. Extensive
experiments on the public datasets demonstrate the effectiveness
of the proposed framework.
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