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Abstract—Gait, i.e., the movement pattern of human limbs
during locomotion, is a promising biometric for identification
of persons. Despite significant improvement in gait recognition
with deep learning, existing studies still neglect a more practical
but challenging scenario — unsupervised cross-domain gait
recognition which aims to learn a model on a labeled dataset then
adapt it to an unlabeled dataset. Due to the domain shift and class
gap, directly applying a model trained on one source dataset to
other target datasets usually obtains very poor results. Therefore,
this paper proposes a Transferable Neighborhood Discovery
(TraND) framework to bridge the domain gap for unsupervised
cross-domain gait recognition. To learn effective prior knowledge
for gait representation, we first adopt a backbone network pre-
trained on the labeled source data in a supervised manner. Then
we design an end-to-end trainable approach to automatically
discover the confident neighborhoods of unlabeled samples in
the latent space. During training, the class consistency indicator
is adopted to select confident neighborhoods of samples based
on their entropy measurements. Moreover, we explore a high-
entropy-first neighbor selection strategy, which can effectively
transfer prior knowledge to the target domain. Our method
achieves the state-of-the-art results on two public datasets, i.e.,
CASIA-B and OU-LP.

Index Terms—Gait Recognition, Human Identification, Do-
main Adaptation, Neighborhood Discovery, Deep Learning

I. INTRODUCTION

Visual gait recognition aims to identify a person using the
gait sequences captured by multiple cameras. This task has
been studied for over a decade since gait is a discriminative
biometric that can be remotely obtained without the coop-
eration of subjects [19]. Due to the significant success of
deep learning for various computer vision tasks [11], [12],
[23]–[28], deep learning based methods for gait recogni-
tion have also achieved excellent performance on individual
datasets [22], [31]. However, in real-world applications, it
is more practical to learn a model on a dataset collected
from one scene (i.e., the source domain) while applying it
to another scene (i.e., the target domain). Moreover, one may
have only labels of the source domain but no labels of the
target data since it is usually difficult and expensive for large-
scale annotation. Therefore, this paper concentrates on the
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Fig. 1. (a) Gait sequences of one person in the CASIA-B dataset in different
conditions and viewpoints. (b) Gait sequences of one person captured from
four viewpoints in the OU-LP dataset.

unsupervised domain adaptation problem for gait cognition,
which is a valuable task yet overlooked by the community of
computer vision and pattern recognition.

However, unsupervised domain adaptation for gait recog-
nition is a non-trivial task that faces several challenges as
shown in Fig. 1. First of all, there is a large domain shift
between the source and the target datasets. Similar to domain
adaptation for image classification, one of the main challenges
is the variance in the spatial dimension of images [20]. Varied
camera settings, clothing conditions, and scenes make the
visual style of gait sequences very different across different
datasets. Moreover, compared with recognition tasks in still
images, the domain shift for cross-domain gait recognition
also results from the temporal dimension, such as the varied
walking rhythms and habits in different scenes or nations [9].
Furthermore, another challenge is the class gap between
datasets, because the classes/IDs of persons have no overlap
across any two datasets [29]. It is more difficult under the
unsupervised condition for which we have only the labels for
the source dataset but no annotation for the target dataset.

Vision-based gait recognition has been studied for over
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ten years [15], [19]. From hand-crafted features [6], [13]
to data-driven representations learned by deep Convolutional
Neural Network (CNN) [2], [14], [18] or Recurrent Neural
Network (RNN) [10], [32], the accuracy of existing methods
has been greatly improved. However, they only consider
learning and testing models on individual datasets while ne-
glecting the cross-dataset condition. Researchers have studied
the unsupervised cross-domain person re-identification (Re-
Id) of which classes of persons also have no overlap across
different datasets [3], [16], [34]. They usually first adopt a
CNN pre-trained on labeled source data to extract features
from unlabeled target data. Then a clustering approach, i.e.,
k-means [4] or DBSCAN [5], is applied to assign pseudo
labels for the target training set. At last, the CNN is fine-tuned
using target samples with pseudo labels. However, since the
number of IDs in the target domain is unknown, it is hard to
set suitable hyper-parameters for clustering methods, such as
the center number of k-means. Moreover, the model cannot
obtain optimal performance due to the noise in pseudo labels.

To this end, we propose a Transferable Neighborhood Dis-
covery framework, named as TraND, for unsupervised cross-
domain gait recognition. To learn effective features from gait
sequences, we adopt GaitSet [2] as the backbone in TraND,
since it is the state-of-the-art model to capture discrimina-
tive and robust features for gait recognition. We first train
the GaitSet network on the source dataset with labels to
learn prior knowledge for gait representation. Different from
existing methods [4], [5], we adopt an end-to-end trainable
approach to automatically discover the neighborhoods of un-
labeled samples inspired by the anchor neighborhood discov-
ery (AND) for unsupervised image recognition [8]. During
training, the class consistency indicator is adopted to select
confident anchors and their neighbors based on their entropy
distribution. In contrast to original AND, we explore a high-
entropy-first sample selection strategy, which can effectively
transfer prior knowledge to the target domain. At last, with
confident neighborhoods, the model is optimized with the
anchor neighborhood loss.

In summary, the contributions of this paper include: 1)
we make one of the first attempts for unsupervised cross-
domain gait recognition which is a valuable yet unexplored
task; 2) we design a TraND framework to learn the transferable
representation for gait recognition, which can close the domain
gap between datasets by automatic neighborhood discovery; 3)
our method achieves state-of-the-art results across two large-
scale datasets, i.e., CASIA-B and OU-LP, which show the
effectiveness of our method.

II. THE PROPOSED FRAMEWORK

A. Overview

Fig. 2 shows the structure of the Transferable Neighborhood
Discovery method with two main stages. In the first stage, we
adopt GaitSet [2] as the backbone network to learn gait fea-
tures from silhouette sequences. We train the GaitSet network
on the labeled source dataset to learn the prior knowledge
of gaits. In the second stage, we first map unlabeled target

samples into the feature space with the trained backbone.
After that, target samples are distributed in a manifold with
the prior knowledge learned from the source data. Then we
adopt the class consistency indicator measured by the entropy
of samples to select the confident neighborhoods of samples
in a progressive manner inspired by [8]. We explore a high-
entropy-first strategy to select confident neighborhoods, which
are finally used to update the network.

B. GaitSet as the Backbone

To learn discriminative representation from gait sequences,
we adopt the state-of-the-art CNN based model, i.e., Gait-
Set [2], as the backbone network in the TraND framework,
as shown in Fig. 2. The GaitSet network directly takes the
silhouette sequence as the input, which considers the sequence
as a set but ignores the order of frames based on the as-
sumption that the appearance of a silhouette has contained
its position information. By this means, the spatial features
of all frames can first be kept to comprehensively model
the gait representation. We then aggregate the frame-level
features into a sequence-level feature with the Set Pooling
(SP) operation as in GaitSet [2]. At last, to discover the
multi-scale features, the Horizontal Pyramid Mapping (HPM)
is applied to generate a discriminative representation of gait
sequences, which splits the feature map extracted by SP into∑5

s=1 2
s−1 strips on height dimension. Given a sequence of

gait silhouettes, X = {xk}K , where xk is one silhouette image
and K is the length of the sequence, the overall process of
the GaitSet network, F (·), can be formulated as follows:

F (X) = h(g({f(xk)}K)), (1)

where f(·) is the CNN to extract the frame-level feature, g(·)
is the SP function to generate the sequence-level feature, and
h(·) is the HPM operation as in GaitSet [2].

C. Supervised Learning of Prior Knowledge

Since we only have labels of the source data but no knowl-
edge about the target domain, it is necessary to effectively
exploit the prior knowledge for gait representation in the
source dataset. Inspired by methods of unsupervised person
Re-Id [34], we train the backbone on the source dataset
{XS ,YS} as shown in the upper part of Fig. 2. Since the
IDs in the source data and the target data are not overlapped,
it is better to make the model learn the similarity or difference
between samples rather than classify them. So, we adopt the
Triplet Loss [17] instead of Cross-Entropy Loss for prior
knowledge learning. The formulation of the Triplet Loss is

L =
N∑
i=1

[||F (Xa
i )−F (X

p
i )||−||F (X

a
i )−F (Xn

i )||+m]+, (2)

where N is the number of training sequences, Xa
i is the

anchor, Xp
i and Xn

i are positive and negative sequences
with respect to the anchor, respectively, and m is the margin
parameter. Here, all samples are randomly selected from the
source dataset XS .

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 14,2021 at 20:08:28 UTC from IEEE Xplore.  Restrictions apply. 



Labeled Source Dataset

CNN

Tr
ip

le
t 

Lo
ss

Unlabeled Target Dataset

1. Supervised 
Prior Knowledge 

Learning

H
o

ri
zo

n
ta

l 
P

yr
am

id
 M

a
p

GaitSet Backbone

2. Transferable 
Neighbor 
Discovery

v

2.1 Feature 
Extraction

2.4 Model 
Updating

2.2 Anchor Selection 2.3 Neighborhood Selection

Se
t 

P
o

o
lin

g

Fig. 2. The overall framework of the Transferable Neighbor Discovery framework.

D. Knowledge Transfer by Neighborhood Discovery

Base on the prior knowledge, the trained backbone network
can support a discriminative latent space that makes the sam-
ples of different persons in the source domain differentiable.
Therefore, we can map the samples of the target dataset
into this feature space by feeding them into the backbone
to obtain their primary representations in the feature space.
However, due to the domain gap between the source domain
and the target domain, the samples in the target domain can
be shifted that the gait sequences of the same person may be
far from each other while the sequences of different persons
may be close. If we directly apply the clustering method
on the target features based on their pairwise distances, the
ambiguous samples can bring noises for refining the model.
Moreover, since the number of classes/IDs in the target dataset
is unknown, it is difficult to set proper parameters for the
clustering methods, such as K in the k-means algorithm.

Inspired by the AND method for unsupervised deep learn-
ing [8], we present the TraND framework to transfer the
knowledge from the source data to the target data by neighbor-
hood discovery. Here we introduce how to discover neighbor-
hoods with the learned prior knowledge, as shown in the lower
part of Fig. 2. First of all, we define the anchor neighborhood
(AN) using k nearest neighbors (kNN) as in [8]. Given a
sample of gait sequence Xt ∈ XT , a neighborhood Nk(Xt)
anchored to Xt is formulated as:

Nk(Xt) = {Xi | s(Xi, Xt) is the top−k in S}∪{Xt}, (3)

where S is the feature space, s(·, ·) is a pairwise similarity
metric such as the cosine similarity.

Neighborhood Selection with Prior Knowledge. Due to
the domain gap between the source dataset and the target
dataset, it is hard to select confident samples with class-
consistent neighbors. Inspired by AND [8], we adopt the class
consistency indicator H(Xt), where the larger the value of
H(Xt) is, the more reliable of the corresponding sample is.
Given a gait sequence Xi ∈ XT , H(Xi) is formulated as:

H(Xi) = −
N∑
j=1

pi,j log(pi,j), pi,j =
exp(X>i Xj/τ)∑N
k=1 exp(X

>
i Xk/τ)

,

(4)
where pi,j is the non-parametric softmax measurement and τ
is a temperature for controlling distribution concentration.

The pi,j represents the degree of the similarity between Xi

and Xj , and the larger pi,j is, the more similar Xi is to Xj .
Since AND [8] is designed for unsupervised learning without
any prior knowledge on the training data, the samples in the
feature space distribution like the instance discrimination [21],
only a few samples get high similarity, which means that
these samples are far away from other samples, i.e., these
samples will be far away from the large group and reside
in a low-density area with sparse visual similar neighbours
surrounding. After the operation of softmax, the pi,j will
be large and the corresponding H(Xi) will be small, which
means Xi resides in a low-density area. Therefore, in the
original AND, the low-entropy-first strategy is exploited to
select the most reliable samples for optimization. However,
in our TraND, more visually similar samples of the target
domain have latent relationships due to the prior knowledge
learned from the source data, These samples that reside in
dense area has small pi,j and the corresponding H(Xi) will
be large. In order to better use the knowledge learned from the
source domain, here we adopt the high-entropy-first strategy
for neighborhood selection which is proved the effectiveness
by the further experiment results.

Model Updating with Neighborhood Supervision. In-
spired by curriculum learning [1], we refine the backbone
CNN in a from-easy-to-hard manner, by which we train the
backbone in R rounds. For each round r, we apply above the
neighborhood selection strategy to obtain the top r/R×100%
anchor samples with their neighbors to update the backbone.
At last, the backbone is optimized with the unsupervised
anchor neighborhood loss which is formulated as:

LAN = −
Nr∑
i=1

log(
∑

j∈Nk(Xi)

pi,j). (5)
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TABLE I
RANK-1 (RANK-1 EXCLUDING IDENTICAL VIEWS IN BRACKETS) RESULTS ACROSS THE CASIA-B (CA) AND OU-LP (OU) DATASETS.

Method OU⇒CA CA⇒OU
NM BG CL NM

Supervised GaitSet [2] 95.5 (95.1) 88.8 (87.8) 71.5 (69.8) 99.2 (99.1)
Direct Testing 45.9 (40.6) 34.7 (29.7) 13.3 (11.3) 69.0 (60.2)
GaitSet + DBSCAN [5] 51.3 (46.5) 39.7 (34.9) 17.4 (15.2) 64.5 (53.6)
GaitSet + k-means [4] 44.2 (38.6) 36.2 (30.7) 16.1 (14.7) 58.5 (46.4)
GaitSet + AND [8] 45.9 (40.6) 28.7 (24.4) 13.9 (12.3) 50.2 (41.0)
TraND (Random Entropy) 41.5 (35.9) 27.8 (23.7) 11.1 (9.7) 52.5 (41.1)
TraND (Low Entropy) 46.3 (41.1) 32.5 (27.7) 11.2 (9.7) 69.1 (61.0)
TraND (Ours) 66.7 (63.4) 46.5 (42.7) 17.5 (15.8) 80.0 (75.6)

III. EXPERIMENTS

A. Experimental Setting

Datasets. The experiments is performed on two large-scale
gait datasets, i.e., CASIA-B [30] and OU-LP [9]. The CASIA-
B dataset contains 124 persons captured from 11 viewpoints
(0◦, 18◦, ..., 180◦). Each person walks six times under normal
conditions (NM #1-6), two times in their coats (CL #1-
2), and two times with bags (BG #1-2) to obtain ten gait
sequences in total. Overall, the CASIA-B dataset contains
13,640 sequences. Following [2], [10], 74 persons are used for
training and the rest 50 persons are leaved for test. For each
subject of the testing set, the first four normal sequences are
registered as the gallery while the rest sequences are probes.
The OU-LP dataset has 4,016 subjects of which 3,836 subjects
are adopted for the cross-camera person identification task.
For each subject, two gait sequences are captured by cameras
and split into four subsequences based on viewpoints to the
cameras (i.e., 55◦, 65◦, 75◦, and 85◦). In our experiment, the
60% of the 3,836 subjects are used for training and the rest are
for testing. For each subject in the testing set, the first sequence
is registered as the probe and the other is the gallery.

Evaluation Metric. The evaluation is performed in a cross-
dataset manner. So, the model is trained with the training set
of CASIA-B with labels and that of OU-LP without labels
while is evaluated on the testing set of OU-LP, and vice versa.
During testing, we compute the Euclidean distance between
each probe and all gallery, which is similar to person Re-
Id [33]. The rank-1 accuracy for each probe is calculated,
while the overall result is measured by the average rank-1
accuracy over all probes.

Implementation Details. In our experiments, we adopt
GaitSet as the backbone to be trained on the source dataset
using settings in [2] and [7]. The margin in Equ. 2 is set as
0.2. Especially, a batch with size of p × k is sampled from
the training set where p denotes the number of persons and
k denotes the number of training samples for each person.
We set the batch size as 8 × 16 and 16 × 8 for CASIA-B
and OULP, respectively. For the unsupervised learning on the
target dataset, the number of nearest neighbors, K, in Equ. 3
is set as 1. The τ of pi,j in Equ. 5 is set as 0.1. During model
updating with neighborhood discovery, we train the backbone
in R = 4 rounds and 200 epochs per round. The initial learning
rate is set to 10−5 and scaled-down by 0.1 in every 40 epochs
after the 80-th epoch. The experiments were performed on four
Tesla P40 GPUs.

B. Comparison with the state-of-the-art methods

We compare TraND with seven methods: 1) Supervised
GaitSet [2]: the GaitSet trained on target dataset in the
supervised manner as the upper bound; 2) Direct Testing:
directly applying the model trained on the source dataset to the
target testing set; 3) GaitSet with clustering methods: GaitSet
+ DBSCAN [5] and GaitSet + k-means [4]; 4) GaitSet +
AND: directly using AND to train the target domain in an
unsupervised method with Gaitset as the backbone [8]; 5)
Variants of TraND: TraND (Random entropy) and TraND
(Low entropy) which select neighborhoods with random
entropy and low entropy, respectively.

The experimental results are listed in Table I. From the
results, we can first find that directly applying the model
trained on the source data to the target data obtains very poor
results compared with the model trained on the target data. It
shows that the domain gap among different datasets can greatly
affect the adaptation capability of the model. Moreover, the
clustering-based methods, i.e., GaitSet + DBSCAN and Gait-
Set + k-means, cannot work well for this task. This is because
the pseudo labels generated by clustering algorithms may
be misleading, which brings much noise during fine-tuning
the model. Furthermore, by comparing different neighborhood
selection strategy, our method achieves the best performance.
This reflects that our method can effectively discover confident
neighborhoods with the class consistency indicator and high-
entropy-first strategy. However, when transferring the model
trained on OU-LP to the conditions of BG and CL on CASIA-
B, all methods obtain poor results. This is because OU-LP
has no samples with a bag or coat, which makes models learn
nothing about this knowledge. Therefore, the cross-condition
settings should be further studied to improve the performance.

IV. CONCLUSION

In this paper, we make one of the first explorations for
unsupervised cross-domain gait recognition with a TraND
framework. In TraND, we first adopt a strong backbone
network to learn the prior knowledge from the labeled source
data. Then the unlabeled target samples are mapped into the
feature space supported by the trained backbone. We adopt the
class consistency indicator and a high-entropy-first strategy
to progressively select confident neighborhoods, which are
utilized to optimize the model using the anchor neighborhood
loss. At last, the superior results of TraND across two public
datasets show the effectiveness of our method.
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